### Algorithms Classifying algorithms by the rate of growth

Lecture 10 by Marina Barsky

# Classifying algorithms by the rate of growth



















### Examples

#### • O(1)

- Getting the length of a given array
- Getting the i-th element from ArrayList
- O(n)
  - Min/Max value in an array
  - Search for something in an unsorted list
- O(n<sup>2</sup>)
  - Finding closest pair of points in a plane

### Algorithms: practical and impractical



Input size n

### What does it mean in practice

#### Assuming n=1,000 and 1ms per operation

| Name        | Big O              | Time to process               | Max n per day |
|-------------|--------------------|-------------------------------|---------------|
| Constant    | O(1)               | 1 ms                          |               |
| Logarithmic | O(log n)           | 9.9 ms                        |               |
| Linear      | O(n)               | 1 s                           | 86,400,000    |
| n log n     | O(n log n)         | 9.9 s                         | 3,943,234     |
| Quadratic   | O(n <sup>2</sup> ) | 16.67 min                     | 9,295         |
| Cubic       | O(n <sup>3</sup> ) | 11.57 days                    | 442           |
| Exponential | O(2 <sup>n</sup> ) | 3.395*10 <sup>290</sup> years | 26            |
| Factorial   | O(n!)              | ???                           | 11            |

| n bytes | log n | n                | n²        | <b>2</b> <sup>n</sup>    |
|---------|-------|------------------|-----------|--------------------------|
| 10 B    | 1     | 10               | 100       | ~1*10 <sup>3</sup>       |
| 100 B   | 2     | 100              | 10000     | ~1*10 <sup>30</sup>      |
| 1 KB    | 3     | 1,000            | 1000000   | ~1*10 <sup>300</sup>     |
| 10 КВ   | 4     | 10,000           | 10000000  | ~1*10 <sup>3000</sup>    |
|         |       |                  | 100000000 |                          |
| 100 KB  | 5     | 100,000          | 0         | ~1*10 <sup>30,000</sup>  |
| 1 MB    | 6     | 1,000,000        | 1.00E+12  | ~1*10 <sup>300,000</sup> |
| 10 MB   | 7     | 10,000,000       | 1.00E+14  | n/a                      |
| 100 MB  | 8     | 100,000,000      | 1.00E+16  | n/a                      |
| 1 GB    | 9     | 1,000,000,000    | 1.00E+18  | n/a                      |
| 10 GB   | 10    | 10,000,000,000   | 1.00E+20  | n/a                      |
| 100 GB  | 11    | 100,000,000,000  | 1.00E+22  | n/a                      |
|         |       | 1,000,000,000,00 |           |                          |
| 1 TB    | 12    | 0                | 1.00E+24  | n/a                      |

CPU with a clock speed of 2 gigahertz (GHz) can carry out two thousand million (**2\*10**<sup>9</sup>) cycles (operations) **per second**.

- Algorithm which runs in O(2<sup>n</sup>) time will process 1 KB of input in ~10<sup>300</sup> years (more than 100 millennia)
- Processing 1 GB of input will take <0.001 ms by O(log n) algorithm, < 1 sec by O(n) algorithm, and >32 years by O(n<sup>2</sup>) algorithm

### Complexity of sorting

```
Sorting 1
void sorting1 (array A)
                                          A. O(n)
  i = 1
                                          B. O(n^2)
  while i < length(A)
                                          C. O(n^3)
     j = i
                                          D. None of
                                            the
     while j > 0 and A[j-1] > A[j]
                                            above
         swap A[j] and A[j-1]
         j = j - 1
     i = i + 1
```

```
A. Bubble sort
 Sorting 1 is a...
                                    B. Insertion sort
                                    C. Selection sort
void sorting1 (array A)
                                    D. None of the
  i = 1
                                       above
  while i < length(A)
     j = i
     while j > 0 and A[j-1] > A[j]
         swap A[j] and A[j-1]
         j = j - 1
     i = i + 1
```



#### Sorting 2

```
void sorting2 (array A)
                                          A. O(n)
  n = length(A)
                                          B. O(n^2)
  swapped = false
                                          C. O(n^3)
  do:
     for i from 0 to n-1
                                          D. None of
                                            the
        if A[i-1] > A[i]:
                                            above
           swap A[i-1] and A[i]
           swapped = true
     n = n - 1
  while (swapped)
```

```
Sorting 2 is a...
void sorting2 (array A)
  n = length(A)
  swapped = false
  do:
     for i from 0 to n-1
        if A[i-1] > A[i]:
          swap A[i-1] and A[i]
          swapped = true
     n = n - 1
  while (swapped)
```

- A. Bubble sort
- B. Insertion sort
- C. Selection sort
- D. None of the above



### Back to basic Data Structures

Complexity of operations on Arrays and Linked Lists

## ArrayList and LinkedList: algorithms

- Read:
  - get (index i)
  - indexOf (Object o)
- Edit:
  - add()
  - remove()

## Running time of common operations for ArrayList and LinkedList

| Operation                        | ArrayList | LinkedList |
|----------------------------------|-----------|------------|
| Get i-th element                 |           |            |
| Search for an element (indexOf)  |           |            |
| Add new element at the end       |           |            |
| Add element at position <i>i</i> |           |            |
| Remove from the end              |           |            |
| Remove from position <i>i</i>    |           |            |
| Resize when full                 |           |            |

## Running time of common operations for ArrayList and LinkedList

| Operation                        | ArrayList                                 | LinkedList                                |
|----------------------------------|-------------------------------------------|-------------------------------------------|
| Get i-th element                 | O(1)                                      | O(n)                                      |
| Search for an element (indexOf)  | O(n)                                      | O(n)                                      |
| Add new element at the end       | O(1)<br>O(n) <sup>if need to resize</sup> | O(n)<br>O(1) <sup>with tail pointer</sup> |
| Add element at position <i>i</i> | O(n)                                      | Traverse in O(n)<br>then O(1)             |
| Remove from the end              | O(1)                                      | O(1) with tail pointer                    |
| Remove from position <i>i</i>    | O(n)                                      | Traverse in O(n)<br>then O(1)             |
| Resize when full                 | O(n)                                      | n/a: never full                           |

```
Knowing that worst-case
performance of the add() method of
ArrayLists is O(n), what is the time
complexity of the following loop?
```

```
void addAll(int n) {
    ArrayList list;
```

list.add(i);

for (int i = 0; i<n; i++) {</pre>

```
A. O (n<sup>2</sup>)
B. O (n)
C. O (1)
D. Nono of
```

```
D. None of the above
```



### Resizing arrays: Amortized analysis

Sometimes, looking at the individual worst-case may be too severe.

We may want to know the total worst-case cost for a sequence of operations.

- In dynamic arrays we only resize every so often.
- Many O(1) operations are followed by an O(n) operation.
- What is the total cost of inserting n elements? O(n<sup>2</sup>)?

#### Definition

Amortized cost: Given a sequence of *n* operations, the amortized cost of each operation is:

Cost (n operations)

n

### Dynamic arrays: amortized cost of *add*

Intuition:

- Say we originally have k elements in the Array List, and the list is half-full
- Now we can add another k elements, each in time O(1) in total k\*O(1) = O(k) steps
- Now we need to resize by copying 2k elements in time
   O(2k)=O(k)

So in total adding k new elements takes O(k) + O(k) = O(k)which is O(k)/k = O(1) amortized cost per single add

## Aggregate method: cost of *n* calls to *add*

- Let's start with array of size 1
- If we choose the strategy of doubling the size of the array on resizing, then during the insertion of *n* elements we will double and copy in total 1 + 2 + 4 + 8 + ...*n*/2 elements
- In total we will perform copy log n times

 $1 + 1 \times 2 + 1 \times 2 \times 2 + 1 \times 2 \times 2 \times 2 + \dots + 1 \times 2^{\log n} = 1 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2} + 1 \times 2^{3} + \dots + 1 \times 2^{\log n}$ 

What do we see here?

Aggregate method: cost of *n* calls to *add*  $1\times2^{0} + 1\times2^{1} + 1\times2^{2} + 1\times2^{3} + \dots 1\times2^{\log n}$ 

- This is a sum of geometric series with a<sub>0</sub>=1, d=2, and total of k=log n elements
- The sum of the first k elements of the geometric series: Sum =  $a_0(d^k - 1)/(d - 1)$
- For our case it is:

 $2^{k} - 1$ , and  $k = \log n$ and  $2^{\log n} = n$  Aggregate method: cost of *n* calls to *add* 

 $1 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2} + 1 \times 2^{3} + \dots 1 \times 2^{\log n}$ 

- This sum is  $O(2^{\log n}) = O(n)$
- Thus the cost of n\*add() is O(n), which is O(1) per add

**Corollary:** 

The amortized cost of *add* in dynamic array is O(1)