Algorithms

Classifying algorithms by the
rate of growth

Lecture 10 by Marina Barsky



Classiftying algorithms
by the rate of growth



|0

0

0O(0)

?

]

0

10



15



I3

2

]_I:lgl::x} I

20



O(Ié)g n)

2

lﬂg{x} I

50

100

150

200






15

10

O(1)
O(log n)
O(n)
O(n log n)

*log(x)

2

lﬂg{x} I

10



100

O(1)
O(log n)
O(n)
O(n log n)
O(n?)

log(x)

*logix)
&

10






4500

3500

3000 +

2500 =

1500 |-

1000

O(1)
O(log n)
O(n)
O(n log n)
O(n?)
O(n3)
O(2")

lng{x} ——




Examples

* QGetting the length of a given array
 Getting the i-th element from ArraylList

 Min/Max value in an array
e Search for something in an unsorted list

* Finding closest pair of points in a plane



Algorithmes:
practical and impractical

Operations

Input size n



What does it mean in practice

Assuming n=1,000 and 1ms per operation

Name Big O Time to process Max n per day

Constant| O(1) 1 ms
Logarithmic| O(log n) 9.9 ms

Linear| O(n) 1s 86,400,000

n log n| O(n log n) 9.9s 3,943,234

Quadratic| O(n?) 16.67 min 9,295

Cubic| O(n3) 11.57 days 442

Exponential| O(2") 3.395*10%°0 years 26

Factorial| O(n!) ?7?7? 11




n bytes log n n n? 2"
10B 1 10 100 ~1*103
100 B 2 100 10000 ~1*1030
1 KB 3 1,000 1000000 ~1*10300
10 KB 4 10,000{ 100000000 ~1*1(03000
1000000000
100 KB 5 100,000 0) ~1*1030,000
1 MB 6 1,000,000 1.00E+12 ~1*10300,000
10 MB 7 10,000,000 1.00E+14 n/a
100 MB 8 100,000,000 1.00E+16 n/a
1GB 9 1,000,000,000 1.00E+18 n/a
10 GB 10 10,000,000,000 1.00E+20 n/a
100 GB 11| 100,000,000,000 1.00E+22 n/a
1,000,000,000,00
1TB 12 0) 1.00E+24 n/a

CPU with a clock speed of 2 gigahertz (GHz) can carry out two thousand million (2*109)
cycles (operations) per second.

® Algorithm which runs in O(2") time will process 1 KB of input in ~103% years (more
than 100 millennia)

® Processing 1 GB of input will take <0.001 ms by O(log n) algorithm, <1 sec by O(n)
algorithm, and >32 years by O(n?) algorithm



Complexity of sorting



Sorting 1

void sortingl (array A)

i =1 A. O(n)
while i < length (A) B. O(n?)
j =i C. O(n3)
D. None of
while j > 0 and A[j-1] > A[j] the
swap A[j] and A[j-1] above
j=3 -1




. . A. Bubbl t
Sorting 1 is a... Lo SoT
B. Insertion sort
C. Selection sort
void sortingl (array A) D. None of the
i=1 above
while i < length(A)
j =i

while j > 0 and A[]j-1] > A[]]
swap A[j] and A[]j-1]
j=3-1




Sorting 2

void sorting2 (array A)

n = length (A) A. O(n)
swapped = false B. O(n?)
do: C. O(n3)
for 1 from 0 to n-1 D. None of
if A[i-1] > A[i]: the
swap A[i-1] and A[i] above
swapped = true
n=n-1

while (swapped)




Sorting 2 Is a... A. Bubble sort
B. Insertion sort
C. Selection sort
void sortingz (array A) D. None of the
n = length (A) Above
swapped = false
do:

for i from 0 to n-1
if A[i1-1] > A[i]:
swap A[i-1] and A[i]
swapped = true
n=n-1
while (swapped)




Back to basic Data

Structures

Complexity of operations on Arrays
and Linked Lists



ArrayList and LinkedList:
algorithms

 Read:
e get (index i)
* indexOf (Object o)

e Edit:
e add()
* remove()



Running time of common operations
for ArrayList and LinkedList

Get i-th element

Search for an element (indexOf)
Add new element at the end
Add element at position i
Remove from the end

Remove from position i

Resize when full



Running time of common operations
for ArrayList and LinkedList

Arraylist ___| LinkedList

Get i-th element O(1) O(n)
Search for an element (indexOf) O(n) O(n)
Add new element at the end O(1) O(n)
O(n)if need to resize O(l) with tail pointer
Add element at position j O(n) Traverse in O(n)
then O(1)
Remove from the end 0(1) {2 et i) e
Remove from position i O(n) Traverse in O(n)
then O(1)

Resize when full O(n) n/a: never full



KNowi
nerfor

ng that worst-case
mance of the add() method of

ArrayLl

sts is O(n), what is the time

complexity of the following loop?

void addAll (int n) { A. O (n?)
ArraylList list; B. O (n)

for (int i = 0; i<n; i++){ C. O (1)

list.add (i) ;

}
}

D. None of the
above




Resizing arrays: Amortized analysis

Sometimes, looking at the individual worst-case may be too
severe.

We may want to know the total worst-case cost for a sequence
of operations.

. In dynamic arrays we only resize every so often.
. Many O(1) operations are followed by an O(n) operation.
. What is the total cost of inserting n elements? O(n?)?



Definition
Amortized cost: Given a sequence of n

operations, the amortized cost of each
operation is:

Cost (n operations)

n



Dynamic arrays:
amortized cost of add

Intuition:
 Say we originally have k elements in the Array List, and
the list is half-full

* Now we can add another k elements, each in time O(1) —
in total k*O(1) = O(k) steps

* Now we need to resize by copying 2k elements in time
O(2k)=0(k)

So in total adding k new elements takes O(k) + O(k) = O(k)
which is O(k)/k = O(1) amortized cost per single add



Aggregate method:
cost of n calls to add

* Let’s start with array of size 1

* If we choose the strategy of doubling the size of the array
on resizing, then during the insertion of n elements we
will double and copy intotal 1+ 2 +4 + 8 +...n/2 elements

* In total we will perform copy log n times

1+ 1x2 + 1x2%2 + 1x2x2x2 + ... 1x2logn =

1%20 + 1x21 + 1x22 + 1x23 + ... 1x2logn What do we
see here?



Aggregate method:

cost of n calls to add
1x20 + 1x21 + 1x22 + 1x23 + ... 1x2l0gn

* This is a sum of geometric series with a,=1, d=2, and total
of k=log n elements

 The sum of the first k elements of the geometric series:
Sum = a,(d*—1)/(d - 1)

e Forourcaseitis:
2k—1,and k=logn
and 2 !08n=p



Aggregate method:

cost of n calls to add
1x20 + 1x21 + 1x22 + 1x23 + ... 1x2l0gn

* This sum is O(2'°e") = O(n)

* Thus the cost of n*add() is O(n), which is O(1) per add

Corollary:

The amortized cost of add in dynamic array is O(1)



