
Algorithms
Classifying algorithms by the

rate of growth

Lecture 10 by Marina Barsky

Classifying algorithms
by the rate of growth

O(0)?

O(1)

O(log n)

O(log n)

O(log n)
O(1)

O(n)

O(log n)
O(1)

O(n)
O(n log n)

O(log n)
O(1)

O(n)
O(n log n)

O(n2)

O(log n)
O(1)

O(n)
O(n log n)

O(n2)
O(n3)

O(log n)
O(1)

O(n)
O(n log n)

O(n2)
O(n3)
O(2n)

Examples

• O(1)
• Getting the length of a given array
• Getting the i-th element from ArrayList

• O(n)
• Min/Max value in an array
• Search for something in an unsorted list

• O(n2)
• Finding closest pair of points in a plane

Algorithms:
practical and impractical

Input size n

What does it mean in practice

Name Big O Time to process Max n per day

Constant O(1) 1 ms

Logarithmic O(log n) 9.9 ms

Linear O(n) 1 s 86,400,000

n log n O(n log n) 9.9 s 3,943,234

Quadratic O(n2) 16.67 min 9,295

Cubic O(n3) 11.57 days 442

Exponential O(2n) 3.395*10290 years 26

Factorial O(n!) ??? 11

Assuming n=1,000 and 1ms per operation

CPU with a clock speed of 2 gigahertz (GHz) can carry out two thousand million (2*109)
cycles (operations) per second.

• Algorithm which runs in O(2n) time will process 1 KB of input in ~10300 years (more
than 100 millennia)

• Processing 1 GB of input will take <0.001 ms by O(log n) algorithm, < 1 sec by O(n)
algorithm, and >32 years by O(n2) algorithm

n bytes log n n n2 2n

10 B 1 10 100 ~1*103

100 B 2 100 10000 ~1*1030

1 KB 3 1,000 1000000 ~1*10300

10 KB 4 10,000 100000000 ~1*103000

100 KB 5 100,000

1000000000

0 ~1*1030,000

1 MB 6 1,000,000 1.00E+12 ~1*10300,000

10 MB 7 10,000,000 1.00E+14 n/a

100 MB 8 100,000,000 1.00E+16 n/a

1 GB 9 1,000,000,000 1.00E+18 n/a

10 GB 10 10,000,000,000 1.00E+20 n/a

100 GB 11 100,000,000,000 1.00E+22 n/a

1 TB 12

1,000,000,000,00

0 1.00E+24 n/a

Complexity of sorting

void sorting1 (array A)

i = 1

while i < length(A)

j = i

while j > 0 and A[j-1] > A[j]

swap A[j] and A[j-1]

j = j - 1

i = i + 1

Sorting 1

A. O(n)

B. O(n2)

C. O(n3)

D. None of
the
above

void sorting1 (array A)

i = 1

while i < length(A)

j = i

while j > 0 and A[j-1] > A[j]

swap A[j] and A[j-1]

j = j - 1

i = i + 1

Sorting 1 is a… A. Bubble sort

B. Insertion sort

C. Selection sort

D. None of the
above

void sorting2 (array A)

n = length(A)

swapped = false

do:

for i from 0 to n-1

if A[i-1] > A[i]:

swap A[i-1] and A[i]

swapped = true

n = n - 1

while (swapped)

Sorting 2

A. O(n)

B. O(n2)

C. O(n3)

D. None of
the
above

void sorting2 (array A)

n = length(A)

swapped = false

do:

for i from 0 to n-1

if A[i-1] > A[i]:

swap A[i-1] and A[i]

swapped = true

n = n - 1

while (swapped)

Sorting 2 is a… A. Bubble sort

B. Insertion sort

C. Selection sort

D. None of the
above

Back to basic Data
Structures
Complexity of operations on Arrays
and Linked Lists

ArrayList and LinkedList:
algorithms

• Read:

• get (index i)

• indexOf (Object o)

• Edit:

• add()

• remove()

Running time of common operations
for ArrayList and LinkedList

Operation ArrayList LinkedList

Get i-th element

Search for an element (indexOf)

Add new element at the end

Add element at position i

Remove from the end

Remove from position i

Resize when full

Running time of common operations
for ArrayList and LinkedList

Operation ArrayList LinkedList

Get i-th element O(1) O(n)

Search for an element (indexOf) O(n) O(n)

Add new element at the end O(1)
O(n)if need to resize

O(n)
O(1) with tail pointer

Add element at position i O(n) Traverse in O(n)
then O(1)

Remove from the end O(1) O(1) with tail pointer

Remove from position i O(n) Traverse in O(n)
then O(1)

Resize when full O(n) n/a: never full

void addAll(int n) {

ArrayList list;

for (int i = 0; i<n; i++){

list.add(i);

}

}

Knowing that worst-case
performance of the add() method of
ArrayLists is O(n), what is the time
complexity of the following loop?

A. O (n2)

B. O (n)

C. O (1)

D. None of the
above

Resizing arrays: Amortized analysis

Sometimes, looking at the individual worst-case may be too
severe.
We may want to know the total worst-case cost for a sequence

of operations.

● In dynamic arrays we only resize every so often.

● Many O(1) operations are followed by an O(n) operation.

● What is the total cost of inserting n elements? O(n2)?

Amortized cost: Given a sequence of n

operations, the amortized cost of each
operation is:

Cost (n operations)

n

Definition

Dynamic arrays:
amortized cost of add
Intuition:

• Say we originally have k elements in the Array List, and

the list is half-full

• Now we can add another k elements, each in time O(1) –

in total k*O(1) = O(k) steps

• Now we need to resize by copying 2k elements in time

O(2k)=O(k)

So in total adding k new elements takes O(k) + O(k) = O(k)

which is O(k)/k = O(1) amortized cost per single add

Aggregate method:
cost of n calls to add

• Let’s start with array of size 1

• If we choose the strategy of doubling the size of the array

on resizing, then during the insertion of n elements we

will double and copy in total 1 + 2 + 4 + 8 + …n/2 elements

• In total we will perform copy log n times

1 + 1×2 + 1×2×2 + 1×2×2×2 + … 1×2log n =

1×20 + 1×21 + 1×22 + 1×23 + … 1×2log n What do we
see here?

Aggregate method:
cost of n calls to add
1×20 + 1×21 + 1×22 + 1×23 + … 1×2log n

• This is a sum of geometric series with a0=1, d=2, and total

of k=log n elements

• The sum of the first k elements of the geometric series:

Sum = a0(dk – 1)/(d – 1)

• For our case it is:

2k – 1, and k = log n

and 2 log n = n

Aggregate method:
cost of n calls to add
1×20 + 1×21 + 1×22 + 1×23 + … 1×2log n

• This sum is O(2log n) = O(n)

• Thus the cost of n*add() is O(n), which is O(1) per add

Corollary:

The amortized cost of add in dynamic array is O(1)

