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Classifying algorithms 
by the rate of growth
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Examples

• O(1)
• Getting the length of a given array
• Getting the i-th element from ArrayList

• O(n)
• Min/Max value in an array
• Search for something in an unsorted list

• O(n2)
• Finding closest pair of points in a plane



Algorithms: 
practical and impractical

Input size n



What does it mean in practice

Name Big O Time to process Max n per day

Constant O(1) 1 ms

Logarithmic O(log n) 9.9 ms

Linear O(n) 1 s 86,400,000

n log n O(n log n) 9.9 s 3,943,234

Quadratic O(n2) 16.67 min 9,295

Cubic O(n3) 11.57 days 442

Exponential O(2n) 3.395*10290 years 26

Factorial O(n!) ??? 11

Assuming n=1,000 and 1ms per operation



CPU with a clock speed of 2 gigahertz (GHz) can carry out two thousand million (2*109) 
cycles (operations) per second.

• Algorithm which runs in O(2n) time will process 1 KB of input in ~10300 years (more 
than 100 millennia)

• Processing 1 GB of input will take <0.001 ms by O(log n) algorithm, < 1 sec by O(n) 
algorithm, and >32 years by O(n2) algorithm

n bytes log n n n2 2n

10 B 1 10 100 ~1*103

100 B 2 100 10000 ~1*1030

1 KB 3 1,000 1000000 ~1*10300

10 KB 4 10,000 100000000 ~1*103000

100 KB 5 100,000

1000000000

0 ~1*1030,000

1 MB 6 1,000,000 1.00E+12 ~1*10300,000

10 MB 7 10,000,000 1.00E+14 n/a

100 MB 8 100,000,000 1.00E+16 n/a

1 GB 9 1,000,000,000 1.00E+18 n/a

10 GB 10 10,000,000,000 1.00E+20 n/a

100 GB 11 100,000,000,000 1.00E+22 n/a

1 TB 12

1,000,000,000,00

0 1.00E+24 n/a



Complexity of sorting



void sorting1 (array A)

i = 1

while i < length(A)

j = i

while j > 0 and A[j-1] > A[j]

swap A[j] and A[j-1]

j = j - 1

i = i + 1

Sorting 1

A. O(n)

B. O(n2)

C. O(n3)

D. None of 
the 
above



void sorting1 (array A)

i = 1

while i < length(A)

j = i

while j > 0 and A[j-1] > A[j]

swap A[j] and A[j-1]

j = j - 1

i = i + 1

Sorting 1 is a… A. Bubble sort

B. Insertion sort

C. Selection sort

D. None of the 
above



void sorting2 (array A)

n = length(A)    

swapped = false

do:

for i from 0 to n-1 

if A[i-1] > A[i]:                

swap A[i-1] and A[i]

swapped = true

n = n - 1

while (swapped)

Sorting 2

A. O(n)

B. O(n2)

C. O(n3)

D. None of 
the 
above



void sorting2 (array A)

n = length(A)    

swapped = false

do:

for i from 0 to n-1 

if A[i-1] > A[i]:                

swap A[i-1] and A[i]

swapped = true

n = n - 1

while (swapped)

Sorting 2 is a… A. Bubble sort

B. Insertion sort

C. Selection sort

D. None of the 
above



Back to basic Data 
Structures
Complexity of operations on Arrays 
and Linked Lists



ArrayList and LinkedList: 
algorithms

• Read:

• get (index i)

• indexOf (Object o)

• Edit:

• add()

• remove()



Running time of common operations 
for ArrayList and LinkedList

Operation ArrayList LinkedList

Get i-th element

Search for an element (indexOf)

Add new element at the end

Add element at position i

Remove from the end

Remove from position i

Resize when full



Running time of common operations 
for ArrayList and LinkedList

Operation ArrayList LinkedList

Get i-th element O(1) O(n)

Search for an element (indexOf) O(n) O(n)

Add new element at the end O(1)
O(n)if need to resize

O(n)
O(1) with tail pointer

Add element at position i O(n) Traverse in O(n)
then O(1)

Remove from the end O(1) O(1) with tail pointer

Remove from position i O(n) Traverse in O(n)
then O(1)

Resize when full O(n) n/a: never full



void addAll(int n) {

ArrayList list;

for (int i = 0; i<n; i++){

list.add(i);

}

}

Knowing that worst-case 
performance of the add() method of 
ArrayLists is O(n), what is the time 
complexity of the following loop?

A. O (n2)

B. O (n)

C. O (1)

D. None of the 
above



Resizing arrays: Amortized analysis

Sometimes, looking at the individual worst-case may be too 
severe. 
We may want to know the total worst-case cost for a sequence 

of operations.

● In dynamic arrays we only resize every so often.

● Many O(1) operations are followed by an O(n) operation.

● What is the total cost of inserting n elements? O(n2)?



Amortized cost: Given a sequence of n

operations, the amortized cost of each 
operation is:

Cost (n operations)

n

Definition



Dynamic arrays:
amortized cost of add
Intuition:

• Say we originally have k elements in the Array List, and 

the list is half-full

• Now we can add another k elements, each in time O(1) –

in total k*O(1) = O(k) steps

• Now we need to resize by copying 2k elements in time 

O(2k)=O(k)

So in total adding k new elements takes O(k) + O(k) = O(k)

which is O(k)/k = O(1) amortized cost per single add



Aggregate method:
cost of n calls to add

• Let’s start with array of size 1

• If we choose the strategy of doubling the size of the array 

on resizing, then during the insertion of n elements we 

will double and copy in total 1 + 2 + 4 + 8 + …n/2 elements

• In total we will perform copy log n times

1 + 1×2 + 1×2×2 + 1×2×2×2 + … 1×2log n =

1×20 + 1×21 + 1×22 + 1×23 + … 1×2log n What do we 
see here?



Aggregate method:
cost of n calls to add
1×20 + 1×21 + 1×22 + 1×23 + … 1×2log n

• This is a sum of geometric series with a0=1, d=2, and total 

of k=log n elements

• The sum of the first k elements of the geometric series:

Sum = a0(dk – 1)/(d – 1)

• For our case it is: 

2k – 1, and k = log n

and 2 log n = n



Aggregate method:
cost of n calls to add
1×20 + 1×21 + 1×22 + 1×23 + … 1×2log n

• This sum is O(2log n) = O(n)

• Thus the cost of n*add() is O(n), which is O(1) per add 

Corollary:

The amortized cost of add in dynamic array is O(1)


