Algorithms

Classifying algorithms by the rate of growth

Lecture 10 by Marina Barsky

Classifying algorithms by the rate of growth

Examples

- O(1)
- Getting the length of a given array
- Getting the i-th element from ArrayList
- O(n)
- Min/Max value in an array
- Search for something in an unsorted list
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Finding closest pair of points in a plane

Algorithms: practical and impractical

What does it mean in practice

Assuming $\mathrm{n}=1,000$ and 1 ms per operation

Name	Big O	Time to process	Max n per day
Constant	$\mathrm{O}(1)$	1 ms	
Logarithmic	$\mathrm{O}(\log \mathrm{n})$	9.9 ms	
Linear	$\mathrm{O}(\mathrm{n})$	1 s	$86,400,000$
$\mathrm{n} \log \mathrm{n}$	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	9.9 s	$3,943,234$
Quadratic	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	16.67 min	9,295
Cubic	$\mathrm{O}\left(\mathrm{n}^{3}\right)$	11.57 days	442
Exponential	$\mathrm{O}\left(2^{\mathrm{n}}\right)$	$3.395^{*} 10^{290}$ years	26
Factorial	$\mathrm{O}(\mathrm{n}!)$	$? ? ?$	11

n bytes	$\log \mathrm{n}$	n	n^{2}	2^{n}
10 B	1	10	100	$\sim 1^{*} 10^{3}$
100 B	2	100	10000	$\sim 1^{*} 10^{30}$
1 KB	3	1,000	1000000	$\sim 1^{*} 10^{300}$
10 KB	4	10,000	100000000	$\sim 1^{*} 10^{3000}$
			1000000000	
100 KB	5	100,000	0	$\sim 1^{*} 10^{30,000}$
1 MB	6	$1,000,000$	$1.00 \mathrm{E}+12$	$\sim 1^{*} 10^{300,000}$
10 MB	7	$10,000,000$	$1.00 \mathrm{E}+14$	n / a
100 MB	8	$100,000,000$	$1.00 \mathrm{E}+16$	n / a
1 GB	9	$1,000,000,000$	$1.00 \mathrm{E}+18$	n / a
10 GB	10	$10,000,000,000$	$1.00 \mathrm{E}+20$	n / a
100 GB	11	$100,000,000,000$	$1.00 \mathrm{E}+22$	n / a
		12	$1,000,000,000,00$	

CPU with a clock speed of 2 gigahertz (GHz) can carry out two thousand million (2*10 ${ }^{\mathbf{9}}$) cycles (operations) per second.

- Algorithm which runs in $\mathrm{O}\left(2^{n}\right)$ time will process 1 KB of input in ${ }^{\sim} \mathbf{1 0}^{300}$ years (more than 100 millennia)
- Processing 1 GB of input will take $<0.001 \mathrm{~ms}$ by $\mathrm{O}(\log \mathrm{n})$ algorithm, <1 sec by $\mathrm{O}(\mathrm{n})$ algorithm, and >32 years by $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm

Complexity of sorting

Sorting 1

void sorting (array A)
i $=1$
while i < length (A)

$$
j=i
$$

swap A[j] and A[j-1] $j=j-1$
$i=i+1$
C. $\mathrm{O}\left(\mathrm{n}^{3}\right)$
D. None of the above
A. $\mathrm{O}(\mathrm{n})$
B. $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Sorting 1 is a...

A. Bubble sort
B. Insertion sort
C. Selection sort
void sorting (array A)
$i=1$
D. None of the above

$$
j=i
$$

$$
\text { while } j>0 \text { and } A[j-1]>A[j]
$$

$$
\text { swap } A[j] \text { and } A[j-1]
$$

$$
j=j-1
$$

$$
i=i+1
$$

Sorting 2

void sorting2 (array A)
$\mathrm{n}=$ length (A)
swapped = false do:

$$
\begin{aligned}
& \text { for i from } 0 \text { to } n-1 \\
& \text { if } A[i-1]>A[i]: \\
& \quad \text { swap } A[i-1] \text { and } A[i] \\
& \quad \text { swapped }=\text { true } \\
& n=n-1 \\
& \text { while } \text { (swapped) }
\end{aligned}
$$

A. $\mathrm{O}(\mathrm{n})$
B. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
C. $\mathrm{O}\left(\mathrm{n}^{3}\right)$
D. None of the above

Sorting 2 is a...

A. Bubble sort
B. Insertion sort
C. Selection sort
void sorting2 (array A) $\mathrm{n}=$ length (A) swapped = false do:

```
for i from 0 to n-1
        if A[i-1] > A[i]:
        swap A[i-1] and A[i]
        swapped = true
        n = n - 1
        while (swapped)
```

D. None of the above

Back to basic Data Structures

Complexity of operations on Arrays and Linked Lists

ArrayList and LinkedList: algorithms

- Read:
- get (index i)
- indexOf (Object o)
- Edit:
- add()
- remove()

Running time of common operations for ArrayList and LinkedList

Operation	ArrayList	LinkedList
Get i-th element		
Search for an element (indexOf)		
Add new element at the end		
Add element at position i		
Remove from the end		
Remove from position i		
Resize when full		

Running time of common operations for ArrayList and LinkedList

Operation	ArrayList	LinkedList
Get i-th element	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})$
Search for an element (indexOf)	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
Add new element at the end	$\mathrm{O}(1)$ $\mathrm{O}(\mathrm{n})$ f need to resize	$\mathrm{O}(\mathrm{n})$ $\mathrm{O}(1)$ with tail pointer
Add element at position i	$\mathrm{O}(\mathrm{n})$	Traverse in $\mathrm{O}(\mathrm{n})$ then $\mathrm{O}(1)$
Remove from the end	$\mathrm{O}(1)$	$\mathrm{O}(1)$ with tail pointer
Remove from position i	$\mathrm{O}(\mathrm{n})$	Traverse in $\mathrm{O}(\mathrm{n})$ then $\mathrm{O}(1)$
Resize when full	$\mathrm{O}(\mathrm{n})$	$\mathrm{n} / \mathrm{a}:$ never full

Knowing that worst-case performance of the add() method of ArrayLists is $O(n)$, what is the time complexity of the following loop?

```
void addAll(int n) {
    ArrayList list;
    for (int i = 0; i<n; i++){
        list.add(i);
    }
}
```

A. $O\left(n^{2}\right)$
B. $\mathrm{O}(\mathrm{n})$
C. O (1)
D. None of the above

Resizing arrays: Amortized analysis

Sometimes, looking at the individual worst-case may be too severe.
We may want to know the total worst-case cost for a sequence of operations.

- In dynamic arrays we only resize every so often.
- Many O(1) operations are followed by an O(n) operation.
- What is the total cost of inserting n elements? $O\left(n^{2}\right)$?

Definition

Amortized cost: Given a sequence of n operations, the amortized cost of each operation is:

Cost (n operations)

n

Dynamic arrays: amortized cost of add

Intuition:

- Say we originally have k elements in the Array List, and the list is half-full
- Now we can add another k elements, each in time $O(1)$ in total $\mathrm{k}^{*} \mathrm{O}(1)=\mathrm{O}(\mathrm{k})$ steps
- Now we need to resize by copying $2 k$ elements in time $\mathrm{O}(2 k)=\mathrm{O}(\mathrm{k})$

So in total adding k new elements takes $O(k)+O(k)=O(k)$ which is $\mathrm{O}(k) / k=\mathrm{O}(1)$ amortized cost per single add

Aggregate method:
 cost of n calls to add

- Let's start with array of size 1
- If we choose the strategy of doubling the size of the array on resizing, then during the insertion of n elements we will double and copy in total $1+2+4+8+\ldots n / 2$ elements
- In total we will perform copy log n times

$$
\begin{aligned}
& 1+1 \times 2+1 \times 2 \times 2+1 \times 2 \times 2 \times 2+\ldots 1 \times 2^{\log n}= \\
& 1 \times 2^{0}+1 \times 2^{1}+1 \times 2^{2}+1 \times 2^{3}+\ldots 1 \times 2^{\log n}
\end{aligned}
$$

What do we see here?

Aggregate method:

cost of n calls to add
$1 \times 2^{0}+1 \times 2^{1}+1 \times 2^{2}+1 \times 2^{3}+\ldots 1 \times 2^{\log n}$

- This is a sum of geometric series with $a_{0}=1, d=2$, and total of $k=\log n$ elements
- The sum of the first k elements of the geometric series:

$$
\text { Sum }=a_{0}\left(d^{k}-1\right) /(d-1)
$$

- For our case it is:

$$
\begin{aligned}
& 2^{\mathrm{k}}-1, \text { and } k=\log n \\
& \text { and } 2^{\log n}=n
\end{aligned}
$$

Aggregate method:
cost of n calls to add
$1 \times 2^{0}+1 \times 2^{1}+1 \times 2^{2}+1 \times 2^{3}+\ldots 1 \times 2^{\log n}$

- This sum is $\mathrm{O}\left(2^{\log \mathrm{n}}\right)=\mathrm{O}(\mathrm{n})$
- Thus the cost of n^{*} add() is $\mathrm{O}(\mathrm{n})$, which is $\mathrm{O}(1)$ per add

Corollary:

The amortized cost of add in dynamic array is $\mathrm{O}(1)$

