
Sorting: Java way
Lecture 14

by Marina Barsky

Demo code: LINK

https://github.com/mgbarsky/cs151_data_structure_demos/tree/main/5.sorting/sorting

Sorting in Java

• Merge sort is implemented for Arrays and Collections

• We can sort a collection of elements of any type

• Merge sort algorithm sorts items by comparing pairs of
elements

• Because it is comparison-based – we need to define how
the objects need to be compared

Sorting with
java.util.Collections

• Java class Collections consists exclusively of static
methods implementing various algorithms on Collections

• The Collections.sort() implements merge sort

• The method takes in any Collection and rearranges its
elements in-place – the collection becomes sorted

• In the last lab you encountered one of subclasses of
Collection: ArrayList – which is just a dynamic array

• So we can say: Collections.sort(arrayList)

Problem:
Comparing custom types
• To sort elements of any type we use generics
• ArrayList stores parametrized types:

public class ArrayList<E>

List<Dog> dogs = new ArrayList<Dog> ();

• When we sort array of Strings, Dates or any primitive
wrapper class of objects, then for these the order is already
defined

• But if we want to sort custom objects – how should the
algorithm compare them?

Imagine you have an array of people. How would you put
them in order? By height? By intelligence? By hotness?

We need Comparator
• Merge sort algorithm compares pairs of values, and if they are in

the wrong order, it will switch them

• We need to tell to the algorithm how two items should be
compared

• We communicate this using one of three int values:

Positive number

Negative number

Zero

a b

>

<

==

Example: Sorting Dogs
public class Dog{

String name;
double age;
int height;
String owner;

public Dog(String name, double age,
int height, String owner) {

this.name = name;
this.age = age;
this.height = height;
this.owner = owner;

}
}

public static void main(String [] args) {
List<Dog> dogs = new ArrayList<Dog> ();

dogs.add(new Dog("Lisa", 2, 10, …));
…

Collections.sort(dogs);
}

We cannot sort dogs, because
it is not clear how two Dogs
should be compared

Custom class
of objects

Comparable interface

• Java provides Comparable interface which should be
implemented by any custom class if we want to use sorting
in Arrays or Collections

• The Comparable interface has parametrized
compareTo(T obj) method which is used by the
sorting algorithm to compare pairs of objects

• Our custom classes must implement this interface if we
want to sort objects of a new type

Comparable Dogs

Comparable interface declares a
single method compareTo which
returns a negative integer, zero,
or a positive integer if “this”
object is less than, equal to, or
greater than another object
passed as an argument.

public class Dog implements Comparable<Dog>{
String name;
…

public int compareTo(Dog another) {
return this.name.compareTo((another).name);

}
}

We declare Dog as
Comparable<Dog>

Note that
interface is also
parametrized

We want to sort by
name, which is String,
and Strings already have
compareTo method – so
we reuse it here

We can sort now
public static void main(String [] args) {

List<Dog> dogs = new ArrayList<Dog> ();
dogs.add(…);…

System.out.println("Before sorting:");
printDogs(dogs);

Collections.sort(dogs);
System.out.println("After default sorting:");
printDogs(dogs);

}

Before sorting:
Dog Lisa 2.0 years 10 inches owned by Alice
Dog Bart 4.0 years 15 inches owned by Bob
Dog Marge 7.0 years 12 inches owned by Alice
Dog Lisa 3.0 years 8 inches owned by Bob

After default sorting:
Dog Bart 4.0 years 15 inches owned by Bob
Dog Lisa 2.0 years 10 inches owned by Alice
Dog Lisa 3.0 years 8 inches owned by Bob
Dog Marge 7.0 years 12 inches owned by Alice

Flexible sorting

• In most real-life scenarios, we want to be able to sort based
on different fields

For example, we would like to be able to sort the
employees based on salary, or sort them by last name or
sort them by age – depending on the task

• The implementation of Comparable.compareTo()
method enables default sorting and we can’t change it
dynamically

• To define multiple ways of sorting we can use Java
Comparator interface and implement different
comparators

Custom Dog Comparators: 1/3
• We can implement the Height Comparator in a separate class, and then

pass it as a second parameter to the Collections.sort()

import java.util.Comparator;

public class HeightComparator
implements Comparator<Dog> {

public int compare(Dog d1, Dog d2) {
return d1.height - d2.height;

}
}

public static void main(String [] args) {
…

Collections.sort(dogs, new HeightComparator());
System.out.println("After sorting by height:");
printDogs(dogs);

}

After sorting by height:
Dog Lisa 3.0 years 8 inches owned by Bob
Dog Lisa 2.0 years 10 inches owned by Alice
Dog Marge 7.0 years 12 inches owned by Alice
Dog Bart 4.0 years 15 inches owned by Bob

That is
implemented in a
separate file

Custom Dog Comparators: 2/3
• We can implement the Age Comparator inside the Dog class – as a static

method which returns a new Age Comparator. Note that we only need
to pass its name to Collections.sort()

public static void main(String [] args) {
…
Collections.sort(dogs, AgeComparator);
System.out.println("After sorting by age:");
printDogs(dogs);

} After sorting by age:
Dog Lisa 2.0 years 10 inches owned by Alice
Dog Lisa 3.0 years 8 inches owned by Bob
Dog Bart 4.0 years 15 inches owned by Bob
Dog Marge 7.0 years 12 inches owned by Alice

public class Dog implements Comparable<Dog>{
…

public static Comparator<Dog> AgeComparator =
new Comparator<Dog>() {

public int compare(Dog d1, Dog d2) {
return (int) (d1.age - d2.age);

}
};

}

This is part of the
Dog class

Custom Dog Comparators: 3/3
• We can implement the Owner Comparator in place – directly inside the

call to Collections.sort()

public static void main(String [] args) {
…
Collections.sort(dogs, new Comparator<Dog>() {

public int compare(Dog d1, Dog d2) {
return d1.owner.compareTo(d2.owner);

}
});

System.out.println("After sorting by owner:");
printDogs(dogs);

}

After sorting by owner:
Dog Lisa 2.0 years 10 inches owned by Alice
Dog Marge 7.0 years 12 inches owned by Alice
Dog Lisa 3.0 years 8 inches owned by Bob
Dog Bart 4.0 years 15 inches owned by Bob

This is implemented
directly as the
second parameter
to sort(). Note that
this comparator
does not have a
name, so it cannot
be reused in any
other part of the
program.

Which of the following will
sort Dogs in reverse order
of their height (from the
tallest to the shortest)?

• A

• B

• C

• All of the above

• None of the
above

Collections.sort(dogs, new Comparator<Dog>() {
public int compare(Dog d1, Dog d2) {

return d2.height – d1.height;
}

});

Collections.sort(dogs, new Comparator<Dog>() {
public int compare(Dog d1, Dog d2) {

return - d1.compareTo(d2);
}

});

Collections.sort(dogs, new Comparator<Dog>() {
public int compare(Dog d1, Dog d2) {

return d2.compareTo(d1);
}

});

public class Dog implements Comparable<Dog>{
…
public int compareTo(Dog another) {

return this.height – another.height;
}

}

A

B

C

height is integer

Which of the following will
sort Dogs in reverse order
of their height (from the
tallest to the shortest)?

• A

• B

• C

• All of the above

• None of the
above

Collections.sort(dogs, new Comparator<Dog>() {
public int compare(Dog d1, Dog d2) {

return d2.height – d1.height;
}

});

Collections.sort(dogs, new Comparator<Dog>() {
public int compare(Dog d1, Dog d2) {

return - d1.compareTo(d2);
}

});

Collections.sort(dogs, new Comparator<Dog>() {
public int compare(Dog d1, Dog d2) {

return d2.compareTo(d1);
}

});

public class Dog implements Comparable<Dog>{
…
public int compareTo(Dog another) {

return this.height – another.height;
}

}

A

B

C

height is integer

Java Merge Sort: notes

• The sorting in Java uses a modified merge sort algorithm:
the merge is omitted if the highest element in the low
sublist is less than the lowest element in the high sublist

• This algorithm offers guaranteed O(n log n) performance

• If we sort a LinkedList, this implementation dumps the
specified list into an array, sorts the array, and iterates over
the list resetting each element from the corresponding
position in the array. This is faster than the O(n2 log n)
performance that would result from attempting to sort a
LinkedList directly

