
Abstract Data Types (ADT)

List ADT

Lecture 14
by Marina Barsky

Abstraction

Abstract Data Type (ADT):
result of the process of abstraction

❑ A specification of data to be stored together with a set of
operations on that data

❑ ADT = Data + Operations

➢ Abstraction - the process of extracting only essential
property from a real-life entity

➢ In CS: Problem → storage + operations

Definition

ADT is a mathematical concept
(from theory of concepts)

ADT is a language-agnostic concept

❑ Different languages support ADT in different ways

❑ In C++ or Java we use class construct to create a new
ADT

ADT includes:

❑ Specification:

▪ What needs to be stored

▪ What operations should be supported

❑ Implementation:

▪ Data structures and algorithms used to meet the
specification

ADT: Specification vs. implementation

Specification and implementation have to be disjoint:

❑ One specification

❑ One or more implementations

▪ Using different data structures

▪ Using different algorithms

Specification is expressed by defining the public variables
and methods

Implementation implements these declared methods

Our First ADT: Sequence of values, List

Specification for List:
❑ We need to store:

▪ sequence of values, the order matters

❑ We need to support the following operations:
▪ Get element by position: get(int index)
▪ Search element: indexOf(E element)
▪ Add new element: add(int index, E element)
▪ Remove element by position: remove(i)

List ADT: possible implementations

● Using a Dynamic Array

data data data data

A

A[0] A[1] A[2] A[3]

link to next node

data

List node

head
link to next node

data

List node

NULL

data

List node

Reference to the
first node

● Using a Linked List

Implementing List ADT using a
Dynamic Array: tradeoffs

+
• Get(i) in O(1)

• Adding to the end in O(1)

-
• Add/remove from position 0

O(n)

• Adding to the end can slow
down due to doubling

• Wasted space: doubling and
then removing – dynamic
arrays never shrink

Alternative implementation: Linked List

Linked List contains:

● Reference to the head of the list: Node head

● [Optional] The number of elements in the list: int size

head

Linked List element
Node

Linked List Data Structure

[size=3]

It is easy to add in the beginning of the list

Node rnode = new Node(‘O’);
rnode.next = head;

Which of the following correctly adds a
new node ‘O’ to the front of the Linked
List?

A.

Node rnode = new Node(‘O’);
head.next = rnode;B.

head.data = ‘O’;C.

D. All of the above

E. None of the above

class Node {

char data;

Node next;

}

Add in front: solution 1/3

Node o = new Node(‘O’);

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

NULL

data:
‘O’

NULL

data:
‘R’

Add in front: solution 2/3

Node o = new Node(‘O’);
o.next = head;

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

Add in front: solution 3/3

Node o = new Node(‘O’);
o.next = head;
head = 0;

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

Traversal: get node by position

private Node getNth(int n) {

if (n >= size)

Error

Node finger = head;

while (n > 0) {

finger = finger.next;

n--;

}

return finger;

}

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

getNth(2)
n=2

We want the node with index 2:

//Finds and returns the n-th node of the Linked List

Traversal: get node by position

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

n=1

We want the node with index 2

private Node getNth(int n) {

if (n >= size)

Error

Node finger = head;

while (n > 0) {

finger = finger.next;

n--;

}

return finger;

}

Traversal: get node by position

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

n=0

Stop and return

private Node getNth(int n) {

if (n >= size)

Error

Node finger = head;

while (n > 0) {

finger = finger.next;

n--;

}

return finger;

}

We want the node with index 2

General add (int index, E element)

Node mnode = new Node(‘M’);
Node parent = getNth(1);
mnode.next = parent.next;
parent.next = mnode;

Which of the following correctly adds a new node ‘M’ at
position 1 of the Linked List below?

A.

Node mnode = new Node(‘M’);
Node child = getNth(1);
mnode.next = child;

C.

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

Node mnode = new Node(‘M’);
Node parent = getNth(0);
mnode.next = parent.next;
parent.next = mnode;

D.

Node mnode = new Node(‘M’);
Node parent = getNth(0);
parent.next = mnode;
mnode.next = parent.next;

B.

E. None of the above

remove (int index, E element)
reference to

the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

Which of the following correctly removes node at index 2?

Node parent = getNth(1);
Node child = parent.next
parent.next = child.next;

A.

Node parent = getNth(1);
parent.next = parent.next.next;

B.

C. Both A and B

D. Neither A nore B

Implementing List ADT using a
Linked List: tradeoffs

+
• No worries about running

out of space – no need for
doubling

• No empty slots

• Direct access to head in O(1)

-
• Space overhead to keep

reference variables

• Difficult to access later
elements: O(n)

• We must always start
from the head

• We can traverse only
forward

Optimizing: tail pointer

● Add at the end is improved

tail.next = new Node()

● Remove from the end is not improved: why?

Need to update tail pointer – but we lose the tail

● Ambiguity: if head==tail – is the list empty or contains a single
node?

Ask if head==null

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

reference to
the last node

tail

Circular lists

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

reference to
the last node

tail

● Given Linked List with tail – how can we make a circular list?
● Do we need to keep both head and tail?
● How can we use a circular list to shift all values in the sequence

by one position forward?

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

next:

data:
‘B’

next:

data:
‘O’

next:

data:
‘R’

NULL

data:
‘E’

0 1 2 3

