Doubly-linked lists
[terators

Lecture 15

Doubly-linked Lists: Node

class Node { class DoublyLinkedNode {
int data; int data;
Node next; — Node prev;

} Node next;

Doubly-Linked List with tail pointer

o Keeps reference/links in both directions
e Traversing can start from either end

DoublyLinkedList:

head

— L

— —

In a [doubly-linked] list
head will be equal to tail:

A. Always

B. Never

C. When the list is empty

D. When there is one element

E. More than one of the above

Doubly-Linked List: tradeoffs

v" Links in both directions: = can traverse forwards and backwards!
v ALL tail operations (including remove last) are fast! Why?
We have direct access to the tail node & its predecessor
x Additional code complexity in each list operation
Example: add (int index, E element) need to consider 4 cases:
empty list
add to front
add to tail
add in middle

x Additional space consumption (storing previous)

head

— T =

— L

tail

Stitching new node between two existing nodes

The code below adds a new node with data ‘X’ between two nodes P
(parent) and C (child) in a doubly-linked list

DoublyLinkedNode x = new DoublylLinkedNode(‘X’);

if (C != null) C.previous = x;
if (P != null) P.next = x;

What should happen if both N and P are null?

A. Nothing should happen: the code above already covers this case
B. We need to set head = x;

C. We need to set C = x; &

D. We need to set P=x;

E. Something else

Why would anyone use a singly-linked
vs. a doubly-linked list?

A. Asingly-linked list uses less memory.
B. Itiseasier toimplement the insertion at position i.
C. It's faster to remove an element from the end. 4

D. None of the above.

E. More than one of the above

Moving heads and tails

* When we add/remove in front — we need to update head
* When we add/remove at the end — we need to update tail

* When the linked list currently is or becomes empty:
head=tail=null

* Many special cases arise!

Example: add in front

newNode = new DoublylLinkedNode(newData, prev=null, next=null)
if head == null: //empty list

head = newNode

tail = head

hesd——f| i T~

—+— = —+—]

[[

newNode newNode

Example: add in front

newNode = new DoublylLinkedNode(newData, prev=null, next=null)

if head == null: //empty list
head = newNode
tail = head

else: //1list with at least one real node
newNode.next = head

newNode

head\/tail | |[——
head
=S)
= +—
[l—— [

newNode

Example: add in front

newNode = new DoublylLinkedNode(newData, prev=null, next=null)
if head == null: //empty list

head = newNode

tail = head
else: //list with at least one real node

newNode.next = head

head.prev = newNode

newNode

head tail |1 /’7
\\\\\\\\\\\L‘///jj//*| = head ‘///////tan

newNode

Example: add in front

newNode = new DoublylLinkedNode(newData, prev=null, next=null)
if head == null: //empty list

head = newNode

tail = head
else: //1list with at least one real node

newNode.next = head

head.prev = newNode

head = newNode

head\J newNode

head tail |1 /’7
\\\\\\\\x/////>| = A/////tail

= 41 41

newNode

Sentinel Nodes (aka Dummy nodes)

* We can get rid of special cases if we add fake head and tail nodes

* These are called sentinel nodes are they are always present and contain
no data

* We can have one sentinel for both head and tail, or we can have a
separate node for each

* The head and tail pointers never move and the nodes are inserted
between them

Doubly-Linked List with two sentinels: constructor

public MyLinkedList() {
] , head = new Node(null);
|| || | tail = new Node(null);

\ 4

H*______ < head.next = tail;
head tail tail.prev = head;
size = 0;

Empty list

Add in front with sentinels

newNode = new DoublylLinkedNode (newData, prev=null, next=null)

//empty list
newNode.prev = head

.

head tail

newNode

Add in front with sentinels

newNode = new DoublylLinkedNode (newData, prev=null, next=null)

//empty list
newNode.prev = head
newNode. next head.next

.

head tail

A

newNode

Add in front with sentinels

newNode = new DoublylLinkedNode (newData, prev=null, next=null)

//empty list
newNode.prev = head
newNode.next = head.next
head.next.prev = newNode

.

head / tail

=
A

newNode

Add in front with sentinels

newNode = new DoublylLinkedNode (newData, prev=null, next=null)

//empty list
newNode.prev = head
newNode.next = head.next
head.next.prev = newNode
head.next = newNode

head / tail

=
A

newNode

Add in front with sentinels

newNode = new DoublylLinkedNode (newData, prev=null, next=null)

newNode.prev = head
newNode.next = head.next
head.next.prev = newNode
head.next = newNode

This also works for non-empty lists — there are no special cases!

v

head /

=
A

newNode

Lab 4.
Doubly-linked lists with two sentinels

* In Lab 4 you will implement this idea

* Always draw the list before and after each operation to make sure
you update all the links correctly

v

\

head /

=
A

newNode

List Iterators

Recap ADT List: supported operations

ADT List supports the following main operations
Get element by position: get(int index)
Search element: indexOf(E element)
Add new element: add(int index, E element)
Remove element by position: remove (i)

For some problems however these operations are insufficient
and we need access to the underlying implementation of the
data

Example: count occurrences

* Write a method count that counts the number of times a
particular element o appears in a List:

public static int count(List 1list, E o) {
int counter = 0;
for (int i=0; i<data.size(); i++) {
E obj = data.get(i);
if (obj.equals(o)) counter++;

¥

return counter;

¥

* Question: would this work well no matter if the List is an Array List
or a Linked List?

Example: count occurrences

* Write a method count that counts the number of times a
particular element o appears in a List:

public static int count(List 1list, E o) {
int counter = 0;
for (int i=0; i<data.size(); i++) {
E obj = data.get(i);
if (obj.equals(o)) counter++;

¥

return counter;

¥

* Answer: No, this method is very inefficient for Linked Lists: get(i)
always starts from the head and this is an O(n?) loop

Efficient solutions are fundamentally

different for:

* Array List

* Linked List

int count (E element){

int counter = 0;

for(int i=0; i<size; i++){

Using for . .
oopang If(data[i].equals(element)
INCexes counter ++;
¥
return counter;
}

int count (E element){
int counter = 0;
Node finger = head;
while(finger != null){
if(finger.data.equals(element)
counter ++; Using

while loop

finger = finger.next;
and next

¥

return counter;

* But the principle of ADT forbids the use of underlying data structures directly!
 We need a uniform interface to iterate over List elements efficiently

Efficient uniform iteration over List

* Problem: Efficient and uniform dispensing of values from the
underlying data structures

e Solution: We create and use the common interface for
iteration

Extending operations for List ADT

get()
indexOf()

add()
remove()
size()
iSEmpty()
clear()

contains()

But also method for efficient data traversal
> iterator()

[terator interface

* [terators provide support for efficiently visiting all elements
of an underlying data structure

* We customize the implementation of the iterator depending
on the data structure

* We abstract away the details of how to access elements

public interface Iterator<E>

boolean hasNext() - arethere more elements for
iteration?

E next() - return next element

Example: Iterator for Array List

Can be a part of the ArrayList class
private class ArraylListIterator implements Iterator{
ArraylList list;
int nextIndex;
public ArraylListIterator (ArraylList list){
this.list = 1list;
this.nextIndex = 0;

public boolean hasNext (){
return (this.nextIndex < list.size());

public Object next(){
return list.data[nextIndex++];

iterator for Array List

private class ArraylListIterator implements Iterator{
ArraylList 1list;_, Reference to the
int nextIndex; actual Array List
public ArraylListIterator (ArraylList list){

th}s.llst = list; '\ We set it in the
this.nextIndex = constructor

public boolean hasNext (){
return (this.nextIndex < list.size());

public Object next(){
return list.data[nextIndex++];

iterator for Array List

private class ArraylListIterator implements Iterator{

ArraylList list; Stores the current state of the iteration: the
int nextIndex;* position in the array to be returned next
public ArraylListIterator (ArraylList list){
this.list = 1list;
this.nextIndex = 0;

public boolean hasNext (){
return (this.nextIndex < list.size());

public Object next(){
return list.data[nextIndex ++];

iterator for Array List

private class ArraylListIterator implements Iterator{
ArraylList list;
int nextIndex;
public ArraylListIterator (ArraylList list){
this.list = 1list;

this.nextIndex = 0;
} As long as

nextindex is within

valid bounds
public boolean hasNext (){

return (this.nextIndex < list.size());

public Object next(){
return list.data[nextIndex++];

iterator for Array List

private class ArraylListIterator implements Iterator{
ArraylList list;
int nextIndex;
public ArraylListIterator (ArraylList list){
this.list = 1list;
this.nextIndex = 0;

public boolean hasNext (){
return (this.nextIndex < list.size());

} Return the element at position
nextindex, and advance
public Object next(){ nextindex to the next position

return list.data[nextIndex++];

ArrayList iterator() returns
array-specific Iterator:

public class ArraylList {
Object[] data;
int size;

public Iterator iterator (){
return new ArraylListIterator(this);

}

Iterator for Linked List

private class LinkedListIterator implements Iterator{

LinkedList list; «_ Same as before:

Node next; reference to the
actual Linked List

public LinkedListIterator (LinkedList 1list){
this.list = list;

this.next = list.head;

public boolean hasNext (){
}

public Object next(){
}

Iterator for Linked List

private class LinkedListIterator implements Iterator{

LinkedList list;

Node next; < Stores the current state of the
iteration: node to be read next

public LinkedListIterator (LinkedList 1list){
this.list = list;

next = list.head;

public boolean hasNext (){
}

public Object next(){
}

Linked List Iterator: hasNext()

Which of the following is the correct implementation of hasNext()?

A. boolean hasNext(){ public class LinkedListIterator
return (this.list.size()>0)

implements Iterator{

}

LinkedList 1list;

Node next;

B. boolean hasNext(){

public boolean hasNext (){

return (next.next != null) y
}
public Object next(){
C. boolean hasNext(){ ¥
return (next!= null) }
}

D. None of the above &

Linked List Iterator: next()

Which of the following is the correct implementation of next()?

A. Object next(){ public class LinkedListIterator
return this.list.get(next) TS
} LinkedList 1list;
Node next;
B, ObjeCt neXt(){ public boolean hasNext (){
next = next.next; }

return next.data;

} public Object next(){

C. Object next(){ }

Object result = next.data;
next = next.next;
return result;

} ©

D. None of the above

Iterator for Linked List

public class LinkedListIterator implements Iterator{
LinkedList list;

Node next;
’ hasNext() basically

answers: can | call
public boolean hasNext (){ next()?

return (next != null);

public Object next(){
Object result = next.data;
next = next.next;

return next;

Linked List with its own iterator

public class LinkedList {
Node head;
int size;

public Iterator iterator (){
return new LinkedListIterator(this);

}

Uniform Counting with iterator()
Works for both Array List and Linked List

public int count (List list, Object o) {
int counter = ©: Data-structure
? / specific
Iterator iter = list.iterator(); operations
while (iter.hasNext()) inside
if(o.equals(iter.next())) counter++;
return counter;

Ilterators: notes

e Iterator objects provide a common interface for traversing List
ADT

e They have access to internal data representations

e They also store the state of traversal

e To implement an efficient iterator you need to understand the
mechanics of the underlying data structure

