
Doubly-linked lists
Iterators

Lecture 15
by Marina Barsky

Doubly-linked Lists: Node

class Node {

int data;

Node next;

}

class DoublyLinkedNode {

int data;

Node prev;

Node next;

}

Doubly-Linked List with tail pointer

● Keeps reference/links in both directions
● Traversing can start from either end

DoublyLinkedList:

head tail

DoublyLinkedNode

In a [doubly-linked] list
head will be equal to tail:

A. Always

B. Never

C. When the list is empty

D. When there is one element

E. More than one of the above

Doubly-Linked List: tradeoffs

✓ Links in both directions: → can traverse forwards and backwards!

✓ ALL tail operations (including remove last) are fast! Why?

We have direct access to the tail node & its predecessor

× Additional code complexity in each list operation

Example: add (int index, E element) need to consider 4 cases:

empty list

add to front

add to tail

add in middle

× Additional space consumption (storing previous)

head tail

Stitching new node between two existing nodes

The code below adds a new node with data ‘X’ between two nodes P
(parent) and C (child) in a doubly-linked list

if (C != null) C.previous = x;
if (P != null) P.next = x;

DoublyLinkedNode x = new DoublyLinkedNode(‘X’);

What should happen if both N and P are null?

A. Nothing should happen: the code above already covers this case

B. We need to set head = x;

C. We need to set C = x;

D. We need to set P=x;

E. Something else

Why would anyone use a singly-linked
vs. a doubly-linked list?

A. A singly-linked list uses less memory.

B. It is easier to implement the insertion at position i.

C. It's faster to remove an element from the end.

D. None of the above.

E. More than one of the above

Moving heads and tails

• When we add/remove in front – we need to update head

• When we add/remove at the end – we need to update tail

• When the linked list currently is or becomes empty:
head=tail=null

• Many special cases arise!

Example: add in front

head tail

newNode

tail

newNode

head

newNode = new DoublyLinkedNode(newData, prev=null, next=null)
if head == null: //empty list

head = newNode
tail = head

newNode = new DoublyLinkedNode(newData, prev=null, next=null)
if head == null: //empty list

head = newNode
tail = head

else: //list with at least one real node
newNode.next = head

tailhead

newNode

tail

Example: add in front

newNode

head

newNode = new DoublyLinkedNode(newData, prev=null, next=null)
if head == null: //empty list

head = newNode
tail = head

else: //list with at least one real node
newNode.next = head
head.prev = newNode

tailhead

newNode

tailhead

Example: add in front

newNode

newNode = new DoublyLinkedNode(newData, prev=null, next=null)
if head == null: //empty list

head = newNode
tail = head

else: //list with at least one real node
newNode.next = head
head.prev = newNode
head = newNode

tailhead

newNode

tail

head

Example: add in front

newNode

Sentinel Nodes (aka Dummy nodes)

• We can get rid of special cases if we add fake head and tail nodes

• These are called sentinel nodes are they are always present and contain
no data

• We can have one sentinel for both head and tail, or we can have a
separate node for each

• The head and tail pointers never move and the nodes are inserted
between them

tailhead

public MyLinkedList() {
head = new Node(null);
tail = new Node(null);
head.next = tail;
tail.prev = head;
size = 0;

}

Doubly-Linked List with two sentinels: constructor

Empty list

tailhead

newNode

Add in front with sentinels

newNode = new DoublyLinkedNode (newData, prev=null, next=null)

//empty list
newNode.prev = head

tailhead

newNode

Add in front with sentinels

newNode = new DoublyLinkedNode (newData, prev=null, next=null)

//empty list
newNode.prev = head
newNode.next = head.next

tailhead

newNode

Add in front with sentinels

newNode = new DoublyLinkedNode (newData, prev=null, next=null)

//empty list
newNode.prev = head
newNode.next = head.next
head.next.prev = newNode

tailhead

newNode

Add in front with sentinels

newNode = new DoublyLinkedNode (newData, prev=null, next=null)

//empty list
newNode.prev = head
newNode.next = head.next
head.next.prev = newNode
head.next = newNode

head

This also works for non-empty lists – there are no special cases!

newNode

Add in front with sentinels

newNode = new DoublyLinkedNode (newData, prev=null, next=null)

newNode.prev = head
newNode.next = head.next
head.next.prev = newNode
head.next = newNode

Lab 4.
Doubly-linked lists with two sentinels

• In Lab 4 you will implement this idea

• Always draw the list before and after each operation to make sure
you update all the links correctly

head

newNode

List Iterators

Recap ADT List: supported operations

ADT List supports the following main operations
▪ Get element by position: get(int index)
▪ Search element: indexOf(E element)
▪ Add new element: add(int index, E element)
▪ Remove element by position: remove(i)

For some problems however these operations are insufficient
and we need access to the underlying implementation of the
data

Example: count occurrences

• Write a method count that counts the number of times a
particular element o appears in a List:

public static int count(List list, E o) {

int counter = 0;

for (int i=0; i<data.size(); i++) {

E obj = data.get(i);

if (obj.equals(o)) counter++;

}

return counter;

}

• Question: would this work well no matter if the List is an Array List
or a Linked List?

Example: count occurrences

• Write a method count that counts the number of times a
particular element o appears in a List:

public static int count(List list, E o) {

int counter = 0;

for (int i=0; i<data.size(); i++) {

E obj = data.get(i);

if (obj.equals(o)) counter++;

}

return counter;

}

• Answer: No, this method is very inefficient for Linked Lists: get(i)
always starts from the head and this is an O(n2) loop

• Linked List

int count (E element){

int counter = 0;

Node finger = head;

while(finger != null){

if(finger.data.equals(element)

counter ++;

finger = finger.next;

}

return counter;

}

Efficient solutions are fundamentally
different for:

• Array List

int count (E element){

int counter = 0;

for(int i=0; i<size; i++){

if(data[i].equals(element)

counter ++;

}

return counter;

}

• But the principle of ADT forbids the use of underlying data structures directly!
• We need a uniform interface to iterate over List elements efficiently

Using for
loop and
indexes

Using
while loop
and next

Efficient uniform iteration over List

• Problem: Efficient and uniform dispensing of values from the
underlying data structures

• Solution: We create and use the common interface for
iteration

Extending operations for List ADT

● get()

● indexOf()

● add()

● remove()

● size()

● isEmpty()

● clear()

● contains()

But also method for efficient data traversal

➢ iterator()

Iterator interface

• Iterators provide support for efficiently visiting all elements
of an underlying data structure

• We customize the implementation of the iterator depending
on the data structure

• We abstract away the details of how to access elements

public interface Iterator<E> :

boolean hasNext() – are there more elements for
iteration?

E next() – return next element

Example: Iterator for Array List

private class ArrayListIterator implements Iterator{

ArrayList list;

int nextIndex;

public ArrayListIterator (ArrayList list){

this.list = list;

this.nextIndex = 0;

}

public boolean hasNext (){

return (this.nextIndex < list.size());

}

public Object next(){

return list.data[nextIndex++];

}

}

Can be a part of the ArrayList class

Iterator for Array List

private class ArrayListIterator implements Iterator{

ArrayList list;

int nextIndex;

public ArrayListIterator (ArrayList list){

this.list = list;

this.nextIndex = 0;

}

public boolean hasNext (){

return (this.nextIndex < list.size());

}

public Object next(){

return list.data[nextIndex++];

}

}

Reference to the
actual Array List

We set it in the
constructor

Iterator for Array List

private class ArrayListIterator implements Iterator{

ArrayList list;

int nextIndex;

public ArrayListIterator (ArrayList list){

this.list = list;

this.nextIndex = 0;

}

public boolean hasNext (){

return (this.nextIndex < list.size());

}

public Object next(){

return list.data[nextIndex ++];

}

}

Stores the current state of the iteration: the
position in the array to be returned next

Iterator for Array List

private class ArrayListIterator implements Iterator{

ArrayList list;

int nextIndex;

public ArrayListIterator (ArrayList list){

this.list = list;

this.nextIndex = 0;

}

public boolean hasNext (){

return (this.nextIndex < list.size());

}

public Object next(){

return list.data[nextIndex++];

}

}

As long as
nextIndex is within
valid bounds

Iterator for Array List

private class ArrayListIterator implements Iterator{

ArrayList list;

int nextIndex;

public ArrayListIterator (ArrayList list){

this.list = list;

this.nextIndex = 0;

}

public boolean hasNext (){

return (this.nextIndex < list.size());

}

public Object next(){

return list.data[nextIndex++];

}

}

Return the element at position
nextIndex, and advance
nextIndex to the next position

ArrayList iterator() returns
array-specific Iterator:

public class ArrayList {

Object[] data;

int size;

public Iterator iterator (){

return new ArrayListIterator(this);

}

}

Iterator for Linked List

private class LinkedListIterator implements Iterator{

LinkedList list;

Node next;

public LinkedListIterator (LinkedList list){

this.list = list;

this.next = list.head;

}

public boolean hasNext (){

}

public Object next(){

}

}

Same as before:
reference to the
actual Linked List

Iterator for Linked List

private class LinkedListIterator implements Iterator{

LinkedList list;

Node next;

public LinkedListIterator (LinkedList list){

this.list = list;

next = list.head;

}

public boolean hasNext (){

}

public Object next(){

}

}

Stores the current state of the
iteration: node to be read next

Linked List Iterator: hasNext()

boolean hasNext(){
return (this.list.size()>0)

}

A.

D. None of the above

Which of the following is the correct implementation of hasNext()?

boolean hasNext(){
return (next.next != null)

}

B.

boolean hasNext(){
return (next!= null)

}

C.

public class LinkedListIterator

implements Iterator{

LinkedList list;

Node next;

public boolean hasNext (){

}

public Object next(){

}

}

Linked List Iterator: next()

Object next(){
return this.list.get(next)

}

A.

D. None of the above

Which of the following is the correct implementation of next()?

Object next(){

next = next.next;

return next.data;

}

B.

Object next(){

Object result = next.data;

next = next.next;

return result;

}

C.

public class LinkedListIterator

implements Iterator{

LinkedList list;

Node next;

public boolean hasNext (){

}

public Object next(){

}

}

Iterator for Linked List

public class LinkedListIterator implements Iterator{

LinkedList list;

Node next;

…

public boolean hasNext (){

return (next != null);

}

public Object next(){

Object result = next.data;

next = next.next;

return next;

}

}

hasNext() basically
answers: can I call
next()?

Linked List with its own iterator

public class LinkedList {

Node head;

int size;

public Iterator iterator (){

return new LinkedListIterator(this);

}

}

Uniform Counting with iterator()
Works for both Array List and Linked List

public int count (List list, Object o) {

int counter = 0;

Iterator iter = list.iterator();

while (iter.hasNext())

if(o.equals(iter.next())) counter++;

return counter;

}

Data-structure
specific
operations
inside

Iterators: notes

● Iterator objects provide a common interface for traversing List
ADT

● They have access to internal data representations

● They also store the state of traversal

● To implement an efficient iterator you need to understand the
mechanics of the underlying data structure

