
Stack and Queue ADT
Lecture 16

by Marina Barsky

Recap: Abstract Data Types (ADT)

ADT includes:

❑ Specification:

■ What needs to be stored

■ What operations need to be supported

❑ Implementation:

■ Data structures and algorithms used to meet the
specification

The difference between specification and implementation
can be best explained on the example of Stack and Queue
ADTs

Example 1:
Abstraction for HR roster
We want to model the maintenance of the list of company
employees

➢ When the company grows - we should be able to add a
new employee

Example 1: HR roster

➢ When the company grows - we should be able to add a
new employee

Example 1: HR roster

➢ When the company grows - we should be able to add a
new employee

➢ When the company downsizes we should be able to
remove the last-added employee (seniority principle)

Example 1: HR roster

Requirements:

➢ When the company grows - we should be able to add a
new employee

➢ When the company downsizes we should be able to
remove the last-added employee (seniority principle)

Abstraction of HR roster: Stack

➢ If these are the only important requirements
to the HR roster, then we can model it using
Stack Abstract Data Type

➢ Stack stores a sequence of elements and
allows only 2 operations: adding a new
element on top of the stack and removing
the element from the top of the stack

➢ Thus, the elements are sorted by the time
stamp - from recent to older

➢ Stack is also called a LIFO queue (Last In -
First Out)

A

B

C

Top

1

2

3

3

2

1

Stack: Abstract data type which stores

dynamic sequence and supports following

operations:

➔Push(e): adds element to collection
➔Peek() [Top()]: returns most recently-

added element

➔Pop(): removes and returns most recently-

added element

➔Boolean IsEmpty(): are there any elements?

➔Boolean IsFull(): is there any space left?

Specification

ADT: Specification vs. implementation

Specification and implementation have to be disjoint:

❑ One specification

❑ One or more implementations

■ Using different data structures (Array? Linked List?)

■ Using different algorithms

Stack Implementation with Array

size: 0
capacity: 5

Stack Implementation with Array

size: 0
capacity: 5

Push(a)

Stack Implementation with Array

a

size: 1
capacity: 5

Stack Implementation with Array

a

size: 1
capacity: 5

Push(b)

Stack Implementation with Array

a b

size: 2
capacity: 5

Stack Implementation with Array

a b

size: 2
capacity: 5

Peek() → b

Stack Implementation with Array

a b

size: 2
capacity: 5

Push(c)

Stack Implementation with Array

a b c

size: 3
capacity: 5

Stack Implementation with Array

a b c

size: 3
capacity: 5

Pop()

Stack Implementation with Array

a b

size: 2
capacity: 5

Pop() → c

Stack Implementation with Array

a b

size: 2
capacity: 5

Push(d)

Stack Implementation with Array

a b d

size: 3
capacity: 5

Stack Implementation with Array

a b d

size: 3
capacity: 5

Push(e)

Stack Implementation with Array

a b d e

size: 4
capacity: 5

Stack Implementation with Array

a b d e

size: 4
capacity: 5

Push(f)

Stack Implementation with Array

a b d e f

size: 5
capacity: 5

Stack Implementation with Array

a b d e f

size: 5
capacity: 5

Push(g)

Stack Implementation with Array

a b d e f

size: 5
capacity: 5

ERROR
isFull() → True

Stack Implementation with Array

a b d e f

size: 5
capacity: 5

Pop()

Stack Implementation with Array

a b d e

size: 4
capacity: 5

IsEmpty → False

Stack Implementation with Array

a b d e

size: 4
capacity: 5

Pop()

Stack Implementation with Array

a b d

size: 3
capacity: 5

Pop()

Stack Implementation with Array

a b

size: 2
capacity: 5

Stack Implementation with Array

a b

size: 2
capacity: 5

Pop()

Stack Implementation with Array

a

size: 1
capacity: 5

Stack Implementation with Array

a

size: 1
capacity: 5

Pop()

Stack Implementation with Array

size: 0
capacity: 5

IsEmpty() → True

Stack ADT: cost of operations

Array Impl.

Push(e) O(1)if no resize is needed

Peek() O(1)

Pop() O(1)

IsEmpty() O(1)

IsFull() O(1)

Stack Implementation with Linked List

head

Push(a)

Stack Implementation with Linked List

head
a

Stack Implementation with Linked List

hea

d a

Push(b)

Stack Implementation with Linked List

head
ab

Stack Implementation with Linked List

head
ab

Push(c)

Stack Implementation with Linked List

head
abc

Stack Implementation with Linked List

head
abc

Peek()

Stack Implementation with Linked List

head
abc

Peek() → c

Stack Implementation with Linked List

head
abc

Pop()

Stack Implementation with Linked List

head
ab

Pop() → c

Stack Implementation with Linked List

head
ab

IsEmpty() → False

Stack ADT: cost of operations

Array Impl. Link. List Impl.

Push(e) O(1) O(1)

Peek() O(1) O(1)

Pop() O(1) O(1)

IsEmpty() O(1) O(1)

IsFull() O(1) O(1)

Stack: Summary

➔ ADT Stack can be implemented with either an Array or

a Linked List Data structure

➔ Each stack operation is O(1): Push, Pop, Peek,

IsEmpty

➔ Considerations:

◆ Linked Lists have storage overhead

◆ Arrays need to be resized when full

Example 2:
Abstraction for the Doctor Queue

We want to model a list of patients waiting in the Hospital ER

➢ When a new patient arrives - we should be able to add
him to the queue

➢ When the doctor calls for the next patient, we should be
able to remove the patient from the front of the queue

Abstraction of Patient List:
Queue
➢ If these are the only two required operations, then we

can model the Doctor queue using a Queue ADT

➢ As in the Stack ADT, the elements in the Queue are
also sorted by timestamp, but in a different order:
from the earlier to the later

➢ This ADT is called a FIFO Queue (First In First Out)

A B C RearFront

1 2 3

Queue: Abstract Data Type which stores dynamic data and

supports the following operations:

➔ Enqueue(e): adds element e to collection

➔ Peek()[Front()]: returns least recently-added (the

oldest) key

➔ Dequeue(): removes and returns least recently-added

key

➔ Boolean IsEmpty(): are there any elements?

➔ Boolean IsFull(): is there any space left?

Specification

Queue Implementation with Linked List

head tail

Queue Implementation with Linked List

Enqueue(a)

head tail

Queue Implementation with Linked List

hea

d

tail

a

Queue Implementation with Linked List

hea

d

tail

a

Enqueue(b)

Queue Implementation with Linked List

hea

d

tail

a b

Queue Implementation with Linked List

head tail

a

Enqueue(c)

b

Queue Implementation with Linked List

head tail

a b c

Queue Implementation with Linked List

head tail

a b c

Dequeue()

Queue Implementation with Linked List

head tail

b c

Dequeue() → a

Queue Implementation with Linked List

➔ Use Linked List augmented with the tail pointer

➔ For Enqueue(e) use list.add(e) - which adds
an element at the end

➔ For Dequeue() use list.removeFirst()

➔ For IsEmpty() use (list.head == NULL?)

Queue ADT: cost of operations

Link. List Impl. with tail Array Impl.

Enqueue (e) O(1)

Dequeue() O(1)

IsEmpty() O(1)

Queue Implementation with Array

0

read

0

write

Queue Implementation with Array

Enqueue(a)

0

read

0

write

Queue Implementation with Array

a

0

read

1

write

Queue Implementation with Array

a

Enqueue(b)

0

read

1

write

Queue Implementation with Array

a b

0

read

2

write

Queue Implementation with Array

a b

Dequeue()

0

read

2

write

Queue Implementation with Array

b

Dequeue() → a

1

read

2

write

Queue Implementation with Array

b

Enqueue(c)

1

read

2

write

Queue Implementation with Array

b c

1

read

3

write

Queue Implementation with Array

b c

Enqueue(d)

1

read

3

write

Queue Implementation with Array

b c d

1

read

4

write

Queue Implementation with Array

b c d

Dequeue()

1

read

4

write

Queue Implementation with Array

c d

Dequeue() → b

2

read

4

write

Queue Implementation with Array

c d

Enqueue(e)

2

read

4

write

Concept of a Circular Array

c d

Enqueue(e)

2

read

4

write

Concept of a Circular Array

c d

Enqueue(e)

2

read

4

write
0

1

23

4

What will be the value of the read and write
pointers after the operation is completed?

c d

Enqueue(e)

2

read

4

write
A. read=2, write=5

B. read=2, write=0

C. read=0, write=0

D. read=2, write=1

E. none of the

above

Queue Implementation with Array

c d e

2

read

0

write
0

1

23

4

Queue Implementation with Array

c d e

Enqueue(f)

2

read

0

write

Queue Implementation with Array

f c d e

2

read

1

write

Queue Implementation with Array

f c d e

Enqueue(g)

2

read

1

write

Queue Implementation with Array

f c d e

Enqueue(g) → ERROR

Cannot set read = write

isFull() → True

2

read

1

write

Queue Implementation with Array

f c d e

Dequeue()

2

read

1

write

Queue Implementation with Array

f d e

Dequeue() → c

3

read

1

write

Queue Implementation with Array

f d e

Dequeue()

3

read

1

write

Queue Implementation with Array

f e

Dequeue() → d

4

read

1

write

Queue Implementation with Array

f e

Dequeue()

4

read

1

write

Queue Implementation with Array

f

Dequeue() → e

0

read

1

write

Queue Implementation with Array

f

Dequeue()

0

read

1

write

Queue Implementation with Array

Dequeue() → f

1

read

1

write

Queue Implementation with Array

read==write

IsEmpty() → True

1

read

1

write

Queue Implementation with Array

➔ Queue ADT can be implemented with a circular Array

➔ We need 2 pointers (indexes in the array): read and
write

➔ When we enqueue(e) we add e at position write, and
increment write. If write was at the last position, it
wraps around to position 0

➔ After enqueue(e) read and write cannot be equal -
because next time you write you would erase the first
element of the queue pointed to by read

➔ When we dequeue() we remove the element at position
read, and increment read

➔ If read==write then the queue is empty

Queue ADT: cost of operations

Link. List Impl. with tail Array Impl.circular

Enqueue (e) O(1) O(1)amortized

Dequeue() O(1) O(1)

IsEmpty() O(1) O(1)

Queue: Summary

➔ Queue ADT can be implemented with either a Linked

List (with tail) or an Array (Circular) Data structure

➔ Each queue operation is O(1): Enqueue, Dequeue,

IsEmpty

➔ Considerations:

◆ Linked Lists have unlimited storage

◆ Arrays need to be resized when full

◆ Linked Lists have simpler maintenance

Hide implementation details
from users of ADT

Users of ADT:

❑ Aware of the specification only

■ Usage only based on the specified operations

❑ Do not care / need not know about the actual

implementation

■ i.e. Different implementations should not affect
the users of ADT

class Stack {

public push(int n) {

...

}

Specification as slit in the wall

■ Users only depend on specifications (interface):

❑ Method signature and return type

Request of

operation

push(4)

Result of

operation

s contains 4

Implementation

int main() {

Stack s;

s.push(4);

s.pop();

return s.isEmpty();

}

User of Stack

ADT and encapsulation
■ User programs should not:

❑ Use the underlying data structure directly

❑ Depend on implementation details

Balanced Brackets Problem

Input

:

A string str consisting of '(', ')', '[',

']','{', '}' characters.

Output: Return whether or not the

string’s parentheses and

brackets are balanced.

Sample application

Balanced:

“([])[]()”,

“((([([])]))())”

Unbalanced:

“(]()”

“][”

“([)]”

“([]”

Examples

Which ADT can help us to solve the problem of
balanced brackets?

Stack?

Queue?

List?

Sorted list?

…?

Is this solution correct?

stack = empty Stack()

for each character X in text:

if X is one of ‘{‘, ‘[‘, ‘(‘

push X to the stack

if X is one of ‘}’,’]’,’)’

Y = stack.pop()

if X does not match Y

return “Unbalanced”

return “Balanced”

A. Yes

B. No

Is this solution correct?

stack = empty Stack()

for each character X in text:

if X is one of ‘{‘, ‘[‘, ‘(‘

push X to the stack

if X is one of ‘}’,’]’,’)’

Y = stack.pop()

if X does not match Y

return “Unbalanced”

return “Balanced”

A. Yes

B. No

Try: text="[{ }"

