
ADT for Quick Search
Tree data structure

Lecture 17
by Marina Barsky

Motivation 1: Searching

Find company address in the address book

Motivation 2: Closest Height

Find people in your class whose height is

closest to yours.

You

Motivation 3: Date Ranges

Find all emails received in a given period

Motivation 4: Partial Search

Find all words that start with some given prefix

Specification

A Quick Search ADT stores a number of elements each

with a key and supports the following operations:

➔ Search(x): returns the element with the key=x

➔ Range(lo, hi): returns all elements with keys between

lo and hi

➔ NearestNeighbor(x): returns an element with the key

closest to x

1 4 6 7 10 13 15

Range(5, 13)

1 4 6 7 10 13 15

NearestNeighbor(5)

1 4 6 7 10 13 15

Search(7)

1 4 6 7 10 13 15

Sorted keys

1 4 6 7 10 13 15

➢ Is seems that the best idea is to store the
elements sorted by keys

How to make this dynamic?

➢ Store keys in sorted order
➢ But we also want to be able to add/remove keys

efficiently

Quick Search ADT

Full Specification

A Quick Search ADT stores a number of elements each

with a key and supports the following operations:

➔ Search(x): returns the element with the key=x

➔ Range(lo, hi): returns all elements with keys between

lo and hi

➔ NearestNeighbor(x): returns an element with the key

closest to x

➔ Insert(x): adds an element with key x

➔ Remove(x): removes the element with key x

Example

1 4 6 7 10 13 15

Insert (3)

1 3 4 6 7 10 13 15

Remove (10)

1 3 4 6 7 13 15

Possible Implementations

Let’s try known data structures:
➢ Array
➢ Sorted array
➢ Linked list

1 4 6 7 10 13 15

Array

➔ Range Search: O(n) ×

7 10 4 13 1 6 15

range(1,7)

Array

➔ Range Search:

➔ Nearest Neighbor:
O(n) ×

O(n) ×

7 10 4 13 1 6 15

nearestNeighbor(6)

Array

➔ Range Search:

➔ Nearest Neighbor:

➔ Insert:

O(n) ×

O(n) ×

O(1) V

7 10 4 13 1 6 15

3insert (3)

Array

➔ Range Search:

➔ Nearest Neighbor:

➔ Insert:

➔ Remove:

O(n) ×

O(n) ×

O(1) V

O(1)* V

7 10 4 13 1 6 15 3

delete (10) swap
The order of

elements does

not matter!

After locating an index of the element to be removed

Sorted Array

➔ Range Search: O(log(n)) V

1 3 4 7 10 13 15

range(4, 8)

Sorted Array

➔ Range Search:

➔ Nearest Neighbor:
O(log(n)) V

O(log(n)) V

1 3 4 7 10 13 15

nearestNeighbor(3)

Sorted Array

➔ Range Search:

➔ Nearest Neighbor:

➔ Insert:

O(log(n)) V

O(log(n)) V

O(n) ×

1 3 4 7 10 13 15

6insert (6)
Must keep in sorted

order – so shift

Sorted Array

O(log(n)) V

O(log(n)) V

O(n) ×

O(n) ×

1 3 4 6 7 10 13 15

➔ Range Search:

➔ Nearest Neighbor:

➔ Insert:

➔ Remove:

delete (6) Cannot have gaps

– shift again

Linked List
➔ Range Search: O(n) ×

7 10 4 13 1 6 15

range (4, 9)

Linked List
O(n) ×

O(n) ×

7 10 4 13 1 6 15

➔ Range Search:

➔ Nearest Neighbor:

nearestNeighbor(13)

Linked List
O(n) ×

O(n) ×

O(1) V

7 10 4 13 1 6 15 3

➔ Range Search:

➔ Nearest Neighbor:

➔ Insert:

insert (3)

Linked List
O(n) ×

O(n) ×

O(1) V

O(1)* V

7 10 4 13 1 6 15 3

➔ Range Search:

➔ Nearest Neighbor:

➔ Insert:

➔ Remove:

delete (10)

*after locating the node with the element to be removed

Nothing works!

We need something new…

➢ We want an efficient data structure for fast
search and update operations

➢ None of the known data structures work
➢ Sorted arrays are good for search but not for

update

Recall: Binary Search

What if we record search questions…

7

4

1 6

13

10 15

We will get a tree

7

4

1 6

13

10 15

Binary Search Tree

New Data Structure: Tree

Natalie Jeremijenko, Tree Logic,

Massachusetts Museum of Contemporary Art

(MASS MoCA), 1999

Biology:
Phylogenetic Tree of animals

Natural Language Processing:
Syntax Tree

Computer programs:
Expression Tree

3 + ((5 + 9) * 2)

Quick Search:
Binary Search Tree

D

B

A C

F

E G

< D > D

Tree - new recursive data
structure

● Main element of the tree: node
● Each node contains data and an array of

links to the child nodes

class TreeNode {

int data;

TreeNode [] children;

[TreeNode parent;]

}

class TreeNode:
def __init__(self, data):

self.data = data
self.children = []
[self.parent = None]

data

Node ref

Tree is defined by a single
reference variable root

Tree is either

● Null (empty tree)
● Root node which contains data and links to

child nodes

data

root

NULL

root

OR

Binary tree:
each node has 2 children

left

data: 15

right

class Node {

int data;

Node left;

Node right;

[Node parent;]

}

Either Left or

Right can be null

(empty tree)

Tree terminology: parent and child

Tree terminology: parent and child

Z

Y

X

Have direct relationship

Tree terminology: node and edge

An edge connects nodes:

parent-child or child-parent relationships

Tree terminology: root

The parent of all nodes, the starting point

Tree terminology: ancestor and
descendant

Y

X

Ancestor: parent, or parent of parent, etc.

Tree terminology: ancestor and
descendant

Descendant: child, or child of child, etc.

Tree terminology: siblings

Sharing the same parent

Tree terminology: leaves and
interior (internal) nodes

In a leaf node both children are empty trees

Tree levels and node depth

Level 0

Level 1

Level 2

Level 3

Distance from the root:

how many edges to go from the root to the

node

depth = 0

depth = 1

depth = 2

depth = 3

Node height

3

2

1

0

0

1

0 0

Level 0

Level 1

Level 2

Level 3

Distance from the node to the bottom:

how many edges to go to the furthest leaf

depth = 0

depth = 1

depth = 2

depth = 3

Algorithm height (node)

if node == null :

return 0

if node.left == null and node.right == null:

return 0

return 1 + Max(height(node.left),

height(node.right))

Algorithm size (tree)

if tree == null

return 0

return 1 + size(tree.left) + size(tree.right)

Recursive algorithms are common

Which of the following correctly computes the depth of
a given tree node in the non-empty tree?

D. More than one is correct

E. None is correct

Algorithm depth(node)

if node == null

return 0

return 1 + depth(node.parent)

Algorithm depth(node)

if node.parent == null

return 0

return 1 + depth(node.parent)

Algorithm depth(node)

if node == null

return -1

return 1 + depth(node.parent)

A.

B.

C.

➢ Task: list all the nodes in the tree

Two types of traversals:

❖ Depth-first: we completely traverse one sub-tree
before exploring a sibling sub-tree

❖ Breadth-first: We traverse all nodes at one level
before progressing to the next level

Tree traversals

➢ In-order
➢ Pre-order
➢ Post-order

Depth-first tree traversals

Depth-first: in order

Algorithm InOrderTraversal(tree)

if tree == Null :

return

InOrderTraversal(tree.left)

print (tree.key)

InOrderTraversal(tree.right)

left - me - right

1

2

3

Which sequence of
nodes is obtained as a
result of in-order
traversal of the tree on
the left?

A . a b d h i e c fg

B . h d i b e a fc g

C . a h d i b e fc g

D. More than one is correct

E. None is correct

a

b

d

h i

e

c

f g

In-order

D

B

A C

F

E G

In-order

D

B

A C

F

E G

In-order

D

B

A C

F

E G

A

In-order

D

B

A C

F

E G

A B

In-order

D

B

A C

F

E G

A B C

In-order

D

B

A C

F

E G

A B C D

In-order

D

B

A C

F

E G

A B C D

In-order

D

B

A C

F

E G

A B C D E

In-order

D

B

A C

F

E G

A B C D E F

In-order

D

B

A C

F

E G

A B C D E F G

In-order

D

B

A C

F

E G

A B C D E F G

me,
node D

left subtree of D right subtree of D

Algorithm PreOrderTraversal(tree)

if tree == null:

return

print (tree.key)

PreOrderTraversal(tree.left)

PreOrderTraversal(tree.right)

me first
me → left → right

2

1

3

Depth-first: pre-order

Which sequence of
nodes is obtained as a
result of pre-order
traversal of the tree on
the left?

A . a b d h i e c fg

B . a b c d e h i fg

C . a b d h i e c fg

D. More than one is correct

E. None is correct

a

b

d

h i

e

c

f g

Pre-order

D

B

A C

F

E G

D

Pre-order

D

B

A C

F

E G

D B

Pre-order

D

B

A C

F

E G

D B A

Pre-order

D

B

A C

F

E G

D B A C

Pre-order

D

B

A C

F

E G

D B A C F

Pre-order

D

B

A C

F

E G

D B A C F E

Pre-order

D

B

A C

F

E G

D B A C F E G

Pre-order

D

B

A C

F

E G

D B A C F E G

me,
node D

left subtree of D right subtree of D

Algorithm PostOrderTraversal(tree)

if tree == null:

return

PostOrderTraversal(tree.left)

PostOrderTraversal(tree.right)

print(tree.key)

children first
left → right → me

1

3

2

Depth-first: post-order

Which sequence of
nodes is obtained as a
result of post-order
traversal of the tree on
the left?

A . a b d h i e c fg

B . a b c d e h i fg

C . h i d e b fg c a

D. More than one is correct

E. None is correct

a

b

d

h i

e

c

f g

Post-order

D

B

A C

F

E G

Post-order

D

B

A C

F

E G

Post-order

D

B

A C

F

E G

A

Post-order

D

B

A C

F

E G

A C

Post-order

D

B

A C

F

E G

A C B

Post-order

D

B

A C

F

E G

A C B

Post-order

D

B

A C

F

E G

A C B

Post-order

D

B

A C

F

E G

A C B E

Post-order

D

B

A C

F

E G

A C B E G

Post-order

D

B

A C

F

E G

A C B E G F

Post-order

D

B

A C

F

E G

A C B E G F D

Post-order

D

B

A C

F

E G

A C B E G F D
me, node D

left subtree of D right subtree of D

Breadth-first traversal

D

B

A C

F

E G

Level traversal:
D

B F
A C E G

Algorithm BreadthFirstTraversal(tree)

if tree == null:

return

Queue q

q.enqueue(tree)

while not q.isEmpty() :

node ← q.dequeue()

print(node)

if node.left != null:

q.enqueue(node.left)

if node.right != null:

q.enqueue(node.right)

Breadth first: level
traversal

D

B

A C

F

E G

Queue: D

Output:

Breadth first: level
traversal

D

B

A C

F

E G

Queue:

Output: D

Breadth first: level
traversal

D

B

A C

F

E G

Queue: B F

Output: D

Breadth first: level
traversal

D

B

A C

F

E G

Queue: B F

Output: D

Breadth first: level
traversal

D

B

A C

F

E G

Queue: F

Output: D B

Breadth first: level
traversal

D

B

A C

F

E G

Queue: F A C

Output: D B

Breadth first: level
traversal

D

B

A C

F

E G

Queue: F A C

Output: D B

Breadth first: level
traversal

D

B

A C

F

E G

Queue: A C

Output: D B F

Breadth first: level
traversal

D

B

A C

F

E G

Queue: A C E G

Output: D B F

Breadth first: level
traversal

D

B

A C

F

E G

Queue: A C E G

Output: D B F

Breadth first: level
traversal

D

B

A C

F

E G

Queue: C E G

Output: D B F A

Breadth first: level
traversal

D

B

A C

F

E G

Queue: C E G

Output: D B F A

Breadth first: level
traversal

D

B

A C

F

E G

Queue: E G

Output: D B F A C

Breadth first: level
traversal

D

B

A C

F

E G

Queue: E G

Output: D B F A C

Breadth first: level
traversal

D

B

A C

F

E G

Queue: G

Output: D B F A C E

Breadth first: level
traversal

D

B

A C

F

E G

Queue: G

Output: D B F A C E

Breadth first: level
traversal

D

B

A C

F

E G

Queue: empty

Output: D B F A C E G

Tree data structure: notes

➢ Tree is fully defined by its root node

➢ Each node has (at least) a key and links to children

➢ Tree traversals:

○ Depth-first: uses recursion (stack)

■ pre-order

■ in-order

■ post-order

○ Breadth-first: uses queue

➢ When working with a tree,
recursive algorithms are
common

➢ In Computer Science, trees grow
down!

Can you guess which (real) words are

spelled by some type of traversal of these

trees?
L

A E

R G L Y

Y

L R

G A L E

E

L G

A L R Y

Which type of traversal is used to spell

these words?

L

A E

R G L Y

Y

L R

G A L E

L A R G E L YG A L L E R Y

E

L G

A L R Y

A L L E R G Y

A. in-order, pre-order, post-order

B. pre-order, post-order, in-order

C. post-order, in-order, pre-order

D. None of the above (something else)

For completeness: breadth-first traversal

R

E

A L

G

L Y

For completeness: breadth-first traversal

R

E

A L

G

L Y

regally

