ADT for Quick Search Tree data structure

Lecture 17
by Marina Barsky

Motivation 1: Searching

Find company address in the address book

Motivation 2: Closest Height

Find people in your class whose height is closest to yours.

Motivation 3: Date Ranges

Find all emails received in a given period

Inbox					
FROM	know	то	subject	SENT TIMEV	
"lawiki.i2p admin" < J5uF>		Bote User <uhod>	hi	Unknown	E
anonymous		Bote User <uhod>	Sanders 2016	Aug 30, 2015 3:27 PM	-
anonymous		Bote User <uhOd>	\|2PCon 2016	Aug 30, 2015 3:25 PM	-
Anon Developer <gvbM>		Bote User <uhod>	Re: Bote changess	Aug 30, 2015 2:54 PM	百
I2P User <uUUx>		Bote User <uhod>	Hello World!	Aug 30, 2015 2:51 PM	-

Motivation 4: Partial Search

Find all words that start with some given prefix

Specification

A Quick Search ADT stores a number of elements each with a key and supports the following operations:
$\rightarrow \quad \operatorname{Search}(x)$: returns the element with the key=x
$\rightarrow \quad$ Range(lo, hi): returns all elements with keys between 10 and hi
$\rightarrow \quad$ NearestNeighbor (x) : returns an element with the key closest to x

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 4 & 6 & 7 & 10 & 13 & 15 \\
\hline
\end{array}
$$

Search(7)

$$
\begin{array}{l|l|l|l|l|l|l|}
\hline 1 & 4 & 6 & 7 & 10 & 13 & 15 \\
\hline
\end{array}
$$

Range $(5,13)$

$$
\begin{array}{l|l|l|l|l|l|l|}
\hline 1 & 4 & 6 & 7 & 10 & 13 & 15 \\
\hline
\end{array}
$$

NearestNeighbor(5)

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 4 & 6 & 7 & 10 & 13 & 15 \\
\hline
\end{array}
$$

Sorted keys

- Is seems that the best idea is to store the elements sorted by keys

How to make this dynamic?

> Store keys in sorted order
> But we also want to be able to add/remove keys efficiently

Quick Search ADT

Full Specification

A Quick Search ADT stores a number of elements each with a key and supports the following operations:
$\rightarrow \quad \operatorname{Search}(x)$: returns the element with the key=x
$\rightarrow \quad$ Range(lo, hi): returns all elements with keys between lo and hi
$\rightarrow \quad$ NearestNeighbor(x): returns an element with the key closest to X
$\rightarrow \quad \operatorname{Insert}(x)$: adds an element with key x
$\rightarrow \quad \operatorname{Remove}(x)$: removes the element with key x

Example

Possible Implementations

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 4 & 6 & 7 & 10 & 13 & 15 \\
\hline
\end{array}
$$

Let's try known data structures:

- Array
- Sorted array
- Linked list

Array

$\rightarrow \quad$ Range Search:

$O(n) x$

Array

\rightarrow Range Search:
 \rightarrow Nearest Neighbor:

$O(n) \times$
$O(n) \times$
nearestNeighbor(6)

Array

\rightarrow Range Search:
\rightarrow Nearest Neighbor:
\rightarrow Insert:

$O(n) x$
$O(n) \times$
$O(1) \vee$
insert (3)

7	10	4	13	1	6	15	

Array

\rightarrow Range Search:
\rightarrow Nearest Neighbor:
\rightarrow Insert:
\rightarrow Remove:

$O(n)$
$O(n) x$
$O(1)$
$O(1)^{*} V$

After locating an index of the element to be removed

Sorted Array

$\rightarrow \quad$ Range Search:

range(4, 8)

1	3	4	7	10	13	15

Sorted Array

\rightarrow Range Search:
 $O(\log (n)) \vee$
 \rightarrow Nearest Neighbor:
 $O(\log (n)) \vee$

nearestNeighbor(3)

Sorted Array

\rightarrow Range Search:
\rightarrow Nearest Neighbor:
\rightarrow Insert:
$O(\log (n)) \vee$
$O(\log (n))$
$O(n) \times$

Sorted Array

\rightarrow Range Search:
\rightarrow Nearest Neighbor:
\rightarrow Insert:
\rightarrow Remove:
$O(\log (n)) \vee$
$O(\log (n))$
$O(n) \times$
$O(n) \times$

Cannot have gaps

- shift again

Linked List

\rightarrow Range Search:
$O(n) x$
range (4, 9)

Linked List

\rightarrow Range Search:
 \rightarrow Nearest Neighbor:
 $O(n) \times$
 $O(n) \times$

nearestNeighbor(13)

Linked List

\rightarrow Range Search:
\rightarrow Nearest Neighbor:
\rightarrow Insert:
$O(n) \times$
$O(n) \times$
$O(1) \vee$
insert (3)

Linked List

\rightarrow Range Search:
\rightarrow Nearest Neighbor:
\rightarrow Insert:
\rightarrow Remove:

$O(n) x$
$O(n) x$
$O(1)$
$O(1)^{*} \mathrm{~V}$
delete (10)

*after locating the node with the element to be removed

Nothing works!

- We want an efficient data structure for fast search and update operations
= None of the known data structures work
= Sorted arrays are good for search but not for update

We need something new...

Recall: Binary Search

What if we record search questions...

We will get a tree

Binary Search Tree

New Data Structure: Tree

Natalie Jeremijenko, Tree Logic,
Massachusetts Museum of Contemporary Art (MASS MoCA), 1999

Biology:
 Phylogenetic Tree of animals

Natural Language Processing: Syntax Tree

Computer programs: Expression Tree

$3+((5+3)$

Quick Search: Binary Search Tree

Tree - new recursive data

 structure- Main element of the tree: node
- Each node contains data and an array of links to the child nodes

Tree is defined by a single reference variable root

Tree is either

- Null (empty tree)
- Root node which contains data and links to child nodes

Binary tree: each node has 2 children

Either Left or Right can be null (empty tree)
class Node \{
int data;
Node left;
Node right;
[Node parent;]
\}

Tree terminology: parent and child

Have direct relationship

Tree terminology: node and edge

An edge connects nodes:
parent-child or child-parent relationships

Tree terminology: root

The parent of all nodes, the starting point

Tree terminology: ancestor and descendant

Ancestor: parent, or parent of parent, etc.

Tree terminology: ancestor and descendant

Descendant: child, or child of child, etc.

Tree terminology: siblings

Sharing the same parent

Tree terminology: leaves and interior (internal) nodes

In a leaf node both children are empty trees

Tree levels and node depth

Distance from the root:
how many edges to go from the root to the node

Node height

Distance from the node to the bottom: how many edges to go to the furthest leaf

Algorithm height (node)

if node == null :
return 0
if node.left $==$ null and node.right $==$ null: return 0
return $1+\operatorname{Max}(h e i g h t(n o d e . l e f t)$), height(node.right))

Algorithm size (tree)

if tree == null

return 0

return $1+\operatorname{size}($ (tree.left $)+$ size(tree.right)

Recursive algorithms are common

Which of the following correctly computes the depth of a given tree node in the non-empty tree?
A. Algorithm depth(node)
if node == null return 0
return $1+\operatorname{depth}($ node.parent $)$
B. Algorithm depth(node)
if node.parent == null

$$
\text { return } 0
$$

return $1+$ depth(node.parent)
C. Algorithm depth(node)

```
    if node == null
        return -1
    return 1 + depth(node.parent)
```

E. None is correct

Tree traversals

> Task: list all the nodes in the tree

Two types of traversals:

* Depth-first: we completely traverse one sub-tree before exploring a sibling sub-tree
* Breadth-first: We traverse all nodes at one level before progressing to the next level

Depth-first tree traversals

= In-order

- Pre-order
= Post-order

Depth-first: in order

Algorithm InOrderTraversal(tree)

if tree== Null :

return

InOrderTraversal(tree.left)
print (tree.key)
InOrderTraversal(tree.right)

Which sequence of nodes is obtained as a result of in-order traversal of the tree on the left?
A. abdhiecfg
B. hdibeafcg
C. ahdibefcg
D. More than one is correct
E. None is correct

In-order

In-order

In-order

A

In-order

AB

In-order

A B C

In-order

ABCD

In-order

ABCD

In-order

ABCDE

In-order

ABCDEF

In-order

ABCDEFG

In-order

$A B C D^{\substack{\text { meé } \\ \text { mode }}} \mathrm{EF}$

Depth-first: pre-order

Algorithm PreOrderTraversal(tree)

if tree == null:
return
print (tree.key)
PreOrderTraversal(tree.left)
PreOrderTraversal(tree.right)
me first
me \rightarrow left \rightarrow right

Which sequence of nodes is obtained as a result of pre-order traversal of the tree on the left?
A. abdhiecfg
B. abcdehifg
C. abdhiecfg
D. More than one is correct
E. None is correct

Pre-order

D

Pre-order

D B

Pre-order

D B A

Pre-order

D B A C

Pre-order

D B A C F

Pre-order

D B ACFE

Pre-order

D B ACFEG

Pre-order

$$
\stackrel{\substack{m e \\ \text { noded }}}{D} \text { B ACC } \underset{\text { left subtree of o Dight subtree of }}{ }
$$

Depth-first: post-order

Algorithm PostOrderTraversal(tree)

if tree== null: return
PostOrderTraversal(tree.left)
PostOrderTraversal(tree.right)
print(tree.key)
children first
left \rightarrow right \rightarrow me

Which sequence of nodes is obtained as a result of post-order traversal of the tree on the left?
A. abdhiecfg
B. abcdehifg
C. hidebfgca
D. More than one is correct
E. None is correct

Post-order

Post-order

Post-order

A

Post-order

AC

Post-order

ACB

Post-order

ACB

Post-order

ACB

Post-order

ACBE

Post-order

ACBEG

Post-order

ACBEGF

Post-order

ACBEGFD

Post-order

me, node D
ACB EGF D
left subtree of D right subtree of D

Breadth-first traversal

Level traversal:
D
B F
ACEG

Algorithm BreadthFirstTraversal(tree)

if tree == null: return

Queue q
q.enqueue(tree)
while not q.isEmpty() :
node $\leftarrow q$.dequeue()
print(node)
if node.left!= null:
q.enqueue(node.left)
if node.right!= null: q.enqueue(node.right)

Breadth first: level traversal

Queue: D
Output:

Breadth first: level traversal

Queue:
Output: D

Breadth first: level traversal

Queue: B F
Output: D

Breadth first: level traversal

Queue: B F
Output: D

Breadth first: level traversal

Queue: F
Output: D B

Breadth first: level traversal

Queue: F A C Output: D B

Breadth first: level traversal

Queue: FA C
Output: D B

Breadth first: level traversal

Queue: A C
Output: D B F

Breadth first: level traversal

Queue: A C E G
Output: D B F

Breadth first: level traversal

Queue: A CEG
Output: D B F

Breadth first: level traversal

Queue: C E G
Output: D B F \underline{A}

Breadth first: level traversal

Queue: C E G
Output: D B F A

Breadth first: level traversal

Queue: E G
Output: D B F A C

Breadth first: level traversal

Queue: E G
Output: D B F A C

Breadth first: level traversal

Queue: G
Output: D B FACE

Breadth first: level traversal

Queue: \underline{G}
Output: D B F A C E

Breadth first: level traversal

Queue: empty
Output: D B FACE \underline{G}

Tree data structure: notes

- Tree is fully defined by its root node
= Each node has (at least) a key and links to children
> Tree traversals:
- Depth-first: uses recursion (stack)
- pre-order
- in-order
- post-order
- Breadth-first: uses queue
> When working with a tree, recursive algorithms are common
> In Computer Science, trees grow down!

Can you guess which (real) words are spelled by some type of traversal of these trees?

Which type of traversal is used to spell these words?

GALLERY

LARGELY

ALLERGY
A. in-order, pre-order, post-order
B. pre-order, post-order, in-order
C. post-order, in-order, pre-order
D. None of the above (something else)

For completeness: breadth-first traversal

For completeness: breadth-first traversal

