ADT for Quick Search
Tree data structure

Lecture 17
by Marina Barsky

Motivation 1: Searching

Find company address in the address book

Motivation 2: Closest Height

Find people in your class whose height is
closest to yours.

/\/ A %/\

Motivation 3: Date Ranges

Find all emails received in a given period

Inbox

FROM

“lawiki.i2p admin” <J5SuF>
anonymous

anonymous

Anon Developer <gvbM>

12P User <ulUUx>

KNOW

TO
Bote User <uhOd>

Bote User <uhOd>

Bote User <uh0d=

Bote User <uhOd>

Bote User <uhOd>

SUBJECT *
hi

Sanders 2016
12ZPCon 2016

Re: Bote changess

Hello World!

SENT TIME »

Unknown

Aug 30,2075327PM
Aug 30,2015 325PM
Aug 30, 20152:54 PM

Aug 30, 2015 2:51 PM

Motivation 4: Partial Search

Find all words that start with some given prefix

Specification

A Quick Search ADT stores a number of elements each
with a key and supports the following operations:

-» Search(x): returns the element with the key=x
» Range(lo, hi): returns all elements with keys between
lo and hi

-» NearestNeighbor(x): returns an element with the key
closest to X

114|606 1011315
Search(7)

114|606 10113 |15
Range(5, 13)

11 4|6 10|13 |15
NearestNeighbor(5)

14 6|7 101315

Sorted keys

1146 | 7|10/13|15

> |s seems that the best idea is to store the
elements sorted by keys

How to make this dynamic?

> Store keys in sorted order
= But we also want to be able to add/remove keys

efficiently

Quick Search ADT

Full Specification

A Quick Search ADT stores a number of elements each
with a key and supports the following operations:

—

-

Search(x): returns the element with the key=x

Range(lo, hi): returns all elements with keys between
lo and hi

NearestNeighbor(x): returns an element with the key
closest to X

Insert(x): adds an element with key x

Remove(X): removes the element with key x

Example

6

7

10

13

15

Insert (3)

1

3

10

13

15

Remove (10)

/

1

3

13

15

Possible Implementations

1146 7|10/13|15

Let’s try known data structures:
> Array
> Sorted array
> Linked list

Array

> Range Search:

range(1,7)

13| 1

15

Array

> Range Search:
> Nearest Neighbor:

nearestNeighbor(6)

v

10

A

13

1

15

-

e 2

-

Array

— e —
= o 5
S N

Range Search: O
Nearest Neighbor: O
Insert: O
insert (3) @
/71104 13| 1 15

X X

Array

» Range Search: O(n) X
> Nearest Neighbor: O(n) X
> Insert: O(1)
> Remove: O(1)*
delete (10) suan Theoder ol
not matter!
7|10 4|13/ 1 |6 |15| 3

After locating an index of the element to be removed

Sorted Array

» Range Search: O(log(n))
range(4, 8)
113147 10/13/15

Sorted Array

» Range Search: O(log(n))
> Nearest Neighbor: O(log(n))
nearestNeighbor(3)
b
1134 10(13/15

-

-

-

Sorted Array

Range Search:
Nearest Neighbor:
Insert:

insert (6) @

C YV VT

O(log(n
O(lo

)

S
p —

n

g(
O(n) x

Must keep in sorted
order — so shift

1

3

A

13

15

Sorted Array

Range Search: O(log(n))
Nearest Neighbor: O(log(n))
Insert: O(n) x
Remove: O(n) x
delete (6) Siﬂﬂfg g:/ne gaps

1/3|4|67|10/13/15

AL

Linked List

> Range Search:

range (4, 9)

/ —10

113 1

115

Linked List

> Range Search:
> Nearest Neighbor:

nearestNeighbor(13)

/7 —10

!

13— 1

115

e 2

e 2

e 2

Linked List

Range Search:
Nearest Neighbor:

Insert:

insert (3)

7/

110

113 1

115 3

Insert:

Linked List

Range Search:
Nearest Neighbor:

Remove:

delete (10)

N

7/

10

4

113

11

- 6

O O OO
:AAA

= S5 35

S N N

X X

*after locating the node with the element to be removed

115

Nothing works!

We want an efficient data structure for fast
search and update operations
None of the known data structures work

Sorted arrays are good for search but not for
update

We need something new...

Recall: Binary Search

7/

10

13

15

MERVN

10

13

15

What if we record search questions...

114|167 | 10 13] 15

1 (4|6 (7] 10 13| 15

We will get a tree

0

7N

4 1

1) (60 s

Binary Search Tree

New Data Structure: Tree

Natalie Jeremijenko, Tree Logic,
Massachusetts Museum of Contemporary Art
(MASS MoCA), 1999

Biology:

Phylogenetic Tree of animals

Glass sponges

Common

ancestor Demosponges

Calcareous sponges

e TN) |
/, \J \
{

Ctenophores \\E\\E (

Radial symmetry, @,
two cell layers

Cnidarians

PROTOSTOMES
(Chapter 32)

Arrow worms

Lophotrochozoans

i isti Exoskeleton moltin
Bilateral symmetry, three distinct cell layers @ @_CXoskeleton moiting

Ecdysozoans

4
DEUTEROSTOMES
(Chapter 33) . Radial Echinoderms
4 symmetry 7

Hemichordates
® Notochord

Chordates

> Sponges
(Chapter 31)

> Diploblastic
animals
(Chapter 31)

> Bilaterians
(triploblastic)

Natural Language Processing:
Syntax Tree

S

,_.-"'--h-‘-‘-"""‘---..._
NP VP
| ...-—'-"""F'-Fh-""‘--.
M A PF
He looked P NP
| — T
at D N =
| | T
the dog P NF
| N
with D N

Computer programs:
Expression Tree

3+((5+9)*2)

Quick Search:
Binary Search Tree

7N

@
® (©E @

Tree - new recursive data

StrUCtU re NodeJ'ref
. Main element of the tree: node data

. Each node contains data and an array of
links to the child nodes

7 AN
SN
class TreeNode {
int data; class TreeNode:
TreeNode [] children; def __init_ (self, data):
) self.data = data
[UFEEEl [pelrEiie)] self.children = []
} [self.parent = None]

Tree is defined by a single
reference variable root

Tree is either

Null (empty tree)
Root node which contains data and links to

child nodes
root root
data
NULL OR
/ \

Binary tree:
each node has 2 children

data: 15

o left right [Either Left or
/ \ Right can be null
(empty tree)

class Node {

int data;

Node left;
Node right;
[Node parent;]

Tree terminology: parent and child

Tree terminology: parent and child

Tree terminology: node and edge

Q/Q\Q
OO
OO

An edge connects nodes:
parent-child or child-parent relationships

Tree terminology: root

@.

7N

SRS
olo/e]e
ole

The parent of all nodes, the starting point

Tree terminology: ancestor and
descendant

Ancestor: parent, or parent of parent, etc.

Tree terminology: ancestor and
descendant

Descendant: child, or child of child, etc.

Tree terminology: siblings

ololole

QO

Sharing the same parent

Tree terminology: leaves and
interior (internal) nodes

<>/<>\
olelele
OO

In a leaf node both children are empty trees

Tree levels and node depth

Level O Q depth=0
Level 1 Q Q depth =1
Level 2 Q Q Q Q depth =2
Level 3 Q Q depth =3

Distance from the root:
how many edges to go from the root to the
node

Node height

Level O @ depth =0
Level 1 @ @ depth =1
Level 2 @ @ @ @ depth =2
Level 3 @ depth =3

Distance from the node to the bottom:
how many edges to go to the furthest leaf

Algorithm height (node)

if node == null :
return O

if node.left == null and node.right == null:
return O

return 1+ Max(height(node.left),

height(node.right))

Algorithm size (free)

if tree == null
return O
return 1+ size(tree.left) + size(tree.right)

Recursive algorithms are common

Which of the following correctly computes the depth of
a given tree node in the non-empty tree?

A. Algorithm depth (node)
if node == null
return O
return 1+ depth(node.parent)

B. Algorithm depth (node)
if node.parent == null

return O
return 1+ depth(node.parent)

C. Algorithm depth (node)
if node == null
return -1
return 1+ depth(node.parent)

D. More than one is correct

E. None is correct

Tree traversals

> Task: list all the nodes in the tree

Two types of traversals:

« Depth-first: we completely traverse one sub-tree
before exploring a sibling sub-tree

« Breadth-first: We traverse all nodes at one level
before progressing to the next level

Depth-first tree traversals

n-order
Pre-order
Post-order

Depth-first: in order

Algorithm InOrderTraversal(free)

if tree == Null :

return
InOrderTraversal(tree.leff)
print (free.key)
InOrderTraversal(tree.right)

left - me - right

o

@ Which sequence of

\ nodes is obtained as a
@ result of in-order
traversal of the tree on
OIOIOIO N

. abdhiecfg
. hdibeafcg
. ahdibefcg
More than one is correct

mo o @ >

None is correct

In-order

In-order

In-order

In-order

AB

In-order

ABC

In-order

ABCD

In-order

ABCD

In-order

ABCDE

In-order

ABCDEF

ABCDEFG

In-order

D

RN

F

DIGIOIC

ABCDEFG

left subtree of D right subtree of D

Depth-first: pre-order

Algorithm PreOrderTraversal(tree)

if ftree == null:

return
print (free.key)
PreOrderTraversal(tree.left)
PreOrderTraversal(tree.right)

me first
me - left = right

o

@ Which sequence of

\ nodes is obtained as a
@ result of pre-order
traversal of the tree on
OIOIOIO N

. abdhiecfg
. abcdehifg
. abdhiecfg
More than one is correct

mo o @ >

None is correct

Pre-order

DB

Pre-order

DBA

Pre-order

4

DIGIOIG

DBAC

Pre-order

DBACF

Pre-order

DBACFE

Pre-order

D

7N

OlNG

A (CE ©

DBACFEG

Pre-order

©
IG
® (O &

D BAC FEG

left subtree of D right subtree of D

>
o
Q.
0]

Depth-first: post-order
Algorithm PostOrderTraversal(tree)

if tree == null:

return
PostOrderTraversal(tree.left)
PostOrderTraversal(tree.right)
print(tree.key)

children first
left = right 2> me

o o

@ Which sequence of

nodes is obtained as a

\@ result of post-order

traversal of the tree on

@ @CD/ @ the left?

. abdhiecfg
. abcdehifg
. hidebfgca
More than one is correct

m o 0O W >

None is correct

Post-order

Post-order

Post-order

A C

Post-order

ACB

Post-order

ACB

Post-order

ACB

Post-order

ACBE

Post-order

ACBEG

Post-order

4

DIGIOIC

ACBEGF

Post-order

D)

7N

OlG

A (CE (©

ACBEGEFD

Post-order

)

7N

F

DIGIOIG

ACB EGF D

left subtree of D right subtree of D

Breadth-first traversal

L)

7N

F

DICIOIE
Level traversal:
D

BF
ACEG

Algorithm BreadthFirstTraversal(tree)
if tree ==null:
return
» Queueq
g.enqueue(tree)
while not @.isEmpty():
node < g.dequeue()
print(node)
1f node.left = null -
g.enqueue(node.left)
if node.right = null:
g.enqueue(node.right)

Breadth first: level
traversal

)

TN

OlG

A (CE (©

Queue: D

Output:

Breadth first: level
traversal

D

7N

OlG

A (CE (©

Queue:

Output: D

Breadth first: level
traversal

/@\
&)
A (C)E) (6
Queue: B F
Output: D

Breadth first: level
traversal

/@\
&
A (C)E) (6
Queue: BF
Output: D

Breadth first: level
traversal

D)
DERG
‘A) (C)(E) (6)

Queue: F

Output: DB

Breadth first: level
traversal

D)
DERG
(n) (©(E) (6

Queue: FAC
Output: DB

Breadth first: level
traversal

D)
DERC
‘A) (C)(E) (6)

Queue: FAC
Output: DB

Breadth first: level
traversal

D

7N

e

A (CE (©

Queue: A_C
Output: DB F

Breadth first: level
traversal

D

7N

e

A CE ©

Queue: ACEG
Output: DB F

Breadth first: level
traversal

D

7N

e

A CE

Queue: ACEG
Output: DB F

Breadth first: level
traversal

D

7N

e

A (CE (©

Queue: CEG
Output: DBF A

Breadth first: level
traversal

D

7N

e

A ©E

Queue: CEG
Output: DBF A

Breadth first: level
traversal

D

7N

e

A (CE (©

Queue: E G
Output: DBFAC

Breadth first: level
traversal

D

7N

e

DICICIC

Queue: EG
Output: DBFAC

Breadth first: level
traversal

D

7N

e

A (CE (©

Queue: G
Output: DBFACE

Breadth first: level
traversal

D

7N

e

A (CE ©

Queue: G

Output: DBFACE

Breadth first: level
traversal

D

7N

e

A (CE (©

Queue: empty

Output: DBFACEG

Tree data structure: notes

Tree is fully defined by its root node
Each node has (at least) a key and links to children
Tree traversals:
o Depth-first: uses recursion (stack)
m pre-order
m in-order
m post-order
o Breadth-first: uses queue
When working with a tree,

recursive algorithms are
common

In Computer Science, trees grow
down!

Can you guess which (real) words are
spelled by some type of traversal of these
Uees7

0 e
\
A

/ / \ LA LN LA LT
G oA L E R G LY AL RY

Which type of traversal is used to spell
these words?

s N e N
I e / - /\

L R ‘A E ©
/ /N VA VAR / R
N N N N N SN/ 7N / \ / \ TN TN
\G/ \A/ f\ L /\'] ‘\E /} {\R /’] (\9/ Q\ L / \Y / \ / \ / {\R/ \Y /}
GALLERY LARGELY ALLERGY

in-order, pre-order, post-order
pre-order, post-order, in-order
post-order, in-order, pre-order & g

o0 ®»

None of the above (something else)

For completeness: breadth-first traversal

E

DI

For completeness: breadth-first traversal

