ADT for **Quick Search Tree** data structure

> Lecture 17 by Marina Barsky

Motivation 1: Searching

Find company address in the address book

Motivation 2: Closest Height

Find people in your class whose height is closest to yours.

Motivation 3: Date Ranges

Find all emails received in a given period

Inbox

FROM	KNOW	то	SUBJECT	SENT TIME V	
"lawiki.i2p admin" <j5uf></j5uf>		Bote User <uhod></uhod>	hi	Unknown	Î
anonymous		Bote User <uh0d></uh0d>	Sanders 2016	Aug 30, 2015 3:27 PM	Î
anonymous		Bote User <uh0d></uh0d>	I2PCon 2016	Aug 30, 2015 3:25 PM	Î
Anon Developer <gvbm></gvbm>		Bote User <uhod></uhod>	Re: Bote changess	Aug 30, 2015 2:54 PM	Î
I2P User <uuux></uuux>		Bote User <uhod></uhod>	Hello World!	Aug 30, 2015 2:51 PM	Î

Motivation 4: Partial Search

Find all words that **start with** some given *prefix*

Specification

A **Quick Search ADT** stores a number of elements each with a *key* and supports the following operations:

- → Search(x): returns the element with the key=x
- → Range(Io, hi): returns all elements with keys between Io and hi
- → NearestNeighbor(x): returns an element with the key closest to x

Search(7)

 1
 4
 6
 7
 10
 13
 15

Range(5, 13)

NearestNeighbor(5)

Sorted keys 1 4 6 7 10 13 15

 Is seems that the best idea is to store the elements sorted by keys

How to make this dynamic?

- Store keys in sorted order
- But we also want to be able to add/remove keys efficiently

Quick Search ADT

Full Specification

A **Quick Search ADT** stores a number of elements each with a *key* and supports the following operations:

- → Search(x): returns the element with the key=x
- → Range(Io, hi): returns all elements with keys between Io and hi
- → NearestNeighbor(x): returns an element with the key closest to x
- \rightarrow **Insert**(x): adds an element with key x
- \rightarrow *Remove*(*x*): removes the element with key *x*

Example

Possible Implementations

Let's try known data structures:

- ► Array
- ➤ Sorted array
- Linked list

→ Range Search:

Array

- → Range Search:
- → Nearest Neighbor:

O(n) × O(n) ×

Array

- → Range Search:
- → Nearest Neighbor:
- → Insert:

O(n) × O(n) × O(1) ∨

Array

- → Range Search:
- → Nearest Neighbor:
- → Insert:
- → Remove:

 $O(n) \times O(n) \times O(1) \times O(1)^* \vee$

After locating an index of the element to be removed

→ Range Search:

 $O(\log(n))$ V

- → Range Search:
- → Nearest Neighbor:

 $O(\log(n)) \lor O(\log(n)) \lor$

- → Range Search:
- → Nearest Neighbor:
- → Insert:

 $O(\log(n)) \lor O(\log(n)) \lor O(n) \checkmark$

- → Range Search:
- → Nearest Neighbor:
- → Insert:
- → Remove:

```
O(\log(n)) \lor
O(\log(n)) \lor
O(n) \times
O(n) \times
```

delete (6)

Cannot have gaps – shift again

→ Range Search:

range (4, 9)

- → Range Search:
- → Nearest Neighbor:

- → Range Search:
- → Nearest Neighbor:
- → Insert:

O(n) × O(n) × O(1) ∨

insert (3)

- → Range Search:
- → Nearest Neighbor:
- → Insert:
- → Remove:

O(n) × O(n) × O(1) ∨ O(1)* ∨

*after locating the node with the element to be removed

Nothing works!

- We want an efficient data structure for fast
 search and update operations
- None of the known data structures work
- Sorted arrays are good for search but not for update

We need something new...

Recall: Binary Search

What if we record search questions...

We will get a tree

Binary Search Tree

New Data Structure: Tree

Natalie Jeremijenko, Tree Logic, Massachusetts Museum of Contemporary Art (MASS MoCA), 1999

Biology: Phylogenetic Tree of animals

Natural Language Processing: Syntax Tree

Computer programs: Expression Tree

3 + ((5 + 9) * 2)

Quick Search: Binary Search Tree

Tree - new recursive data structure

- Main element of the tree: *node*
- Each node contains data and an array of links to the child nodes

class TreeNode {

}

```
int data;
```

TreeNode [] children;

```
[TreeNode parent;]
```

```
class TreeNode:
    def __init__(self, data):
        self.data = data
        self.children = []
        [self.parent = None]
```

Tree is defined by a single reference variable *root*

Tree is either

- Null (empty tree)
- Root node which contains data and links to child nodes

Binary tree: each node has 2 children

[Node parent;]

}
Tree terminology: parent and child

Tree terminology: parent and child

Have direct relationship

Tree terminology: node and edge

An edge connects nodes: parent-child or child-parent relationships

Tree terminology: root

The parent of all nodes, the starting point

Tree terminology: ancestor and descendant

Ancestor: parent, or parent of parent, etc.

Tree terminology: ancestor and descendant

Descendant: child, or child of child, etc.

Tree terminology: siblings

Sharing the same parent

Tree terminology: leaves and interior (internal) nodes

In a leaf node both children are empty trees

Distance from the root: how many edges to go from the root to the node

Distance from the node to the bottom: how many edges to go to the <u>furthest</u> leaf

Algorithm *height* (node)

- if node == null :
 - return O
- if node.left == null and node.right == null:
 return 0

Algorithm *size* (*tree*)

if tree == null
 return 0
return 1 + size(tree.left) + size(tree.right)

Recursive algorithms are common

Which of the following correctly computes the *depth* of a given tree node in the non-empty tree?

```
A. Algorithm depth(node)
    if node == null
        return 0
        return 1+ depth(node.parent)
```

```
B. Algorithm depth(node)
    if node.parent == null
        return 0
        return 1+ depth(node.parent)
```

D. More than one is correct

E. None is correct

```
C. Algorithm depth(node)
    if node == null
        return -1
        return 1+ depth(node.parent)
```


Tree traversals

Task: list all the nodes in the tree

Two types of traversals:

- *Depth-first*: we completely traverse one sub-tree before exploring a sibling sub-tree
- Breadth-first: We traverse all nodes at one level before progressing to the next level

Depth-first tree traversals

- > In-order
- Pre-order
- ▹ Post-order

Depth-first: in order

Algorithm *InOrderTraversal(tree)*

if tree == Null :

return
InOrderTraversal(tree.left)
print (tree.key)
InOrderTraversal(tree.right)

Which sequence of nodes is obtained as a result of **in-order traversal** of the tree on the left?

- A. abdhiecfg
- B. hdibeafcg
- C. ahdibefcg
- D. More than one is correct
- E. None is correct

A B

ABC

ABCD

ABCD

ABCDE

ABCDEF

ABCDEFG

node D A B C D E F G

left subtree of D

right subtree of D

Depth-first: pre-order

Algorithm **PreOrder**Traversal(tree)

if tree == null:
 return
print (tree.key)
PreOrderTraversal(tree.left)
PreOrderTraversal(tree.right)

me first me \rightarrow left \rightarrow right

Which sequence of nodes is obtained as a result of **pre-order traversal** of the tree on the left?

- A. abdhiecfg
- B. abcdehifg
- C. abdhiecfg
- D. More than one is correct
- E. None is correct

 \Box

DB

DBA

DBAC

DBACF

DBACFE
Pre-order

DBACFEG

Pre-order

me, node D D BAC FEG left subtree of D right subtree of D

Depth-first: post-order

Algorithm *PostOrderTraversal(tree)*

if *tree* == *null*:

return

PostOrderTraversal(tree.left)
PostOrderTraversal(tree.right)
print(tree.key)

children first left \rightarrow right \rightarrow me

Which sequence of nodes is obtained as a result of **post-order traversal** of the tree on the left?

- A. abdhiecfg
- B. abcdehifg
- C. hidebfgca
- D. More than one is correct
- E. None is correct

AC

ACB

ACB

ACB

ACBE

ACBEG

ACBEGF

ACBEGFD

me, node D

ACB EGF D

left subtree of D right subtree of D

Breadth-first traversal

Level traversal: D B F A C E G

```
Algorithm BreadthFirstTraversal(tree)
  if tree == null:
     return
Queue q
  q.enqueue(tree)
  while not q.isEmpty():
     node \leftarrow q.dequeue()
     print(node)
     if node.left != null:
       q.enqueue(node.left)
     if node.right != null:
       q.enqueue(node.right)
```


Queue: <u>D</u>

Output:

Queue:

Output: D

Queue: B F Output: D

Queue: <u>B</u> F Output: D

Queue: F Output: D <u>B</u>

Queue: F <u>A C</u> Output: D B

Queue: $\underline{F} \underline{A} \underline{C}$ Output: D B

Queue: <u>A C</u> Output: D B <u>F</u>

Queue: A C E G

Output: D B F

Queue: <u>A</u> C E G Output: D B F

Queue: C E G Output: D B F <u>A</u>

Queue: <u>C</u> E G Output: D B F A

Queue: E G Output: D B F A <u>C</u>

Queue: <u>E</u> G Output: D B F A C

Queue: G Output: D B F A C <u>E</u>

Queue: <u>G</u> Output: D B F A C E

Queue: empty Output: D B F A C E <u>G</u>

Tree data structure: notes

- > Tree is fully defined by its root node
- Each node has (at least) a key and links to children
- ➤ Tree traversals:
 - Depth-first: uses recursion (stack)
 - pre-order
 - ∎ in-order
 - post-order
 - Breadth-first: uses queue
 - When working with a tree, recursive algorithms are common
- In Computer Science, trees grow down!

Can you guess which (real) words are spelled by some type of traversal of these trees?

Which type of traversal is used to spell these words?

GALLERY

LARGELY

ALLERGY

- A. in-order, pre-order, post-order
- B. pre-order, post-order, in-order
- C. post-order, in-order, pre-order
- D. None of the above (something else)

For completeness: breadth-first traversal

For completeness: breadth-first traversal