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Motivation 1: Searching

Find company address in the address book



Motivation 2: Closest Height

Find people in your class whose height is 

closest to yours.

You



Motivation 3: Date Ranges

Find all emails received in a given period



Motivation 4: Partial Search

Find all words that start with some given prefix



Specification

A Quick Search ADT stores a number of elements each 

with a key and supports the following operations:

➔ Search(x): returns the element with the key=x

➔ Range(lo, hi): returns all elements with keys between 

lo and hi

➔ NearestNeighbor(x): returns an element with the key 

closest to x



1 4 6 7 10 13 15

Range(5, 13)

1 4 6 7 10 13 15

NearestNeighbor(5)

1 4 6 7 10 13 15

Search(7)

1 4 6 7 10 13 15



Sorted keys

1 4 6 7 10 13 15

➢ Is seems that the best idea is to store the 
elements sorted by keys



How to make this dynamic?

➢ Store keys in sorted order
➢ But we also want to be able to add/remove keys 

efficiently



Quick Search ADT

Full Specification

A Quick Search ADT stores a number of elements each 

with a key and supports the following operations:

➔ Search(x): returns the element with the key=x

➔ Range(lo, hi): returns all elements with keys between 

lo and hi

➔ NearestNeighbor(x): returns an element with the key 

closest to x

➔ Insert(x): adds an element with key x

➔ Remove(x): removes the element with key x



Example

1 4 6 7 10 13 15

Insert (3)

1 3 4 6 7 10 13 15

Remove (10)

1 3 4 6 7 13 15



Possible Implementations

Let’s try known data structures:
➢ Array
➢ Sorted array
➢ Linked list

1 4 6 7 10 13 15



Array

➔ Range Search:  O(n) ×

7 10 4 13 1 6 15

range(1,7)



Array

➔ Range Search:

➔ Nearest Neighbor:  
O(n) ×

O(n) ×

7 10 4 13 1 6 15

nearestNeighbor(6)



Array

➔ Range Search: 

➔ Nearest Neighbor:  

➔ Insert:

O(n) ×

O(n) ×

O(1) V

7 10 4 13 1 6 15

3insert (3)



Array

➔ Range Search:  

➔ Nearest Neighbor:  

➔ Insert:

➔ Remove:

O(n) ×

O(n) ×

O(1) V

O(1)* V

7 10 4 13 1 6 15 3

delete (10) swap
The order of 

elements does 

not matter!

After locating an index of the element to be removed



Sorted Array

➔ Range Search:  O(log(n)) V

1 3 4 7 10 13 15

range(4, 8)



Sorted Array

➔ Range Search:  

➔ Nearest Neighbor:  
O(log(n)) V

O(log(n)) V

1 3 4 7 10 13 15

nearestNeighbor(3)



Sorted Array

➔ Range Search:  

➔ Nearest Neighbor:

➔ Insert:

O(log(n)) V

O(log(n)) V

O(n) ×

1 3 4 7 10 13 15

6insert (6)
Must keep in sorted 

order – so shift



Sorted Array

O(log(n)) V

O(log(n)) V

O(n) ×

O(n) ×

1 3 4 6 7 10 13 15

➔ Range Search:  

➔ Nearest Neighbor:

➔ Insert:

➔ Remove:

delete (6) Cannot have gaps 

– shift again



Linked List
➔ Range Search:  O(n) ×

7 10 4 13 1 6 15

range (4, 9)



Linked List
O(n) ×

O(n) ×

7 10 4 13 1 6 15

➔ Range Search:  

➔ Nearest Neighbor:  

nearestNeighbor(13)



Linked List
O(n) ×

O(n) ×

O(1) V

7 10 4 13 1 6 15 3

➔ Range Search:  

➔ Nearest Neighbor:  

➔ Insert:

insert (3)



Linked List
O(n) ×

O(n) ×

O(1) V

O(1)* V

7 10 4 13 1 6 15 3

➔ Range Search:  

➔ Nearest Neighbor:  

➔ Insert:

➔ Remove:

delete (10)

*after locating the node with the element to be removed



Nothing works!

We need something new…

➢ We want an efficient data structure for fast 
search and update operations

➢ None of the known data structures work
➢ Sorted arrays are good for search but not for 

update



Recall: Binary Search



What if we record search questions…

7

4

1 6

13

10 15



We will get a tree

7

4

1 6

13

10 15

Binary Search Tree



New Data Structure: Tree

Natalie Jeremijenko, Tree Logic, 

Massachusetts Museum of Contemporary Art 

(MASS MoCA), 1999



Biology: 
Phylogenetic Tree of animals 



Natural Language Processing: 
Syntax Tree



Computer programs: 
Expression Tree

3 + ((5 + 9) * 2) 



Quick Search:
Binary Search Tree

D

B

A C

F

E G

< D > D



Tree - new recursive data 
structure

● Main element of the tree: node
● Each node contains data and an array of 

links to the child nodes

class TreeNode {

int data;

TreeNode [] children;

[TreeNode parent;]

}

class TreeNode:
def __init__(self, data):

self.data = data
self.children = []
[self.parent = None]

data

Node ref



Tree is defined by a single 
reference variable root

Tree is either

● Null (empty tree)
● Root node which contains data and links to 

child nodes 

data

root

NULL

root

OR



Binary tree: 
each node has 2 children

left

data: 15

right

class Node {

int data;

Node left;

Node right;

[Node parent;]

}

Either Left or 

Right can be null 

(empty tree)



Tree terminology: parent and child



Tree terminology: parent and child

Z

Y

X

Have direct relationship



Tree terminology: node and edge

An edge connects nodes: 

parent-child or child-parent relationships



Tree terminology: root

The parent of all nodes, the starting point



Tree terminology: ancestor and 
descendant

Y

X

Ancestor: parent, or parent of parent, etc.



Tree terminology: ancestor and 
descendant

Descendant: child, or child of child, etc.



Tree terminology: siblings

Sharing the same parent



Tree terminology: leaves and 
interior (internal) nodes

In a leaf node both children are empty trees



Tree levels and node depth

Level 0

Level 1

Level 2

Level 3

Distance from the root: 

how many edges to go from the root to the 

node

depth = 0

depth = 1

depth = 2

depth = 3



Node height

3

2

1

0

0

1

0 0

Level 0

Level 1

Level 2

Level 3

Distance from the node to the bottom:

how many edges to go to the furthest leaf

depth = 0

depth = 1

depth = 2

depth = 3



Algorithm height (node)

if node == null :

return 0

if node.left == null and node.right == null:

return 0

return 1 + Max(height(node.left),

height(node.right))



Algorithm size (tree)

if tree == null

return 0

return 1 + size(tree.left) + size(tree.right)

Recursive algorithms are common



Which of the following correctly computes the depth of 
a given tree node in the non-empty tree?

D. More than one is correct

E. None is correct

Algorithm depth(node)

if node == null

return 0

return 1 + depth(node.parent)

Algorithm depth(node)

if node.parent == null

return 0

return 1 + depth(node.parent)

Algorithm depth(node)

if node == null

return -1

return 1 + depth(node.parent)

A.

B.

C.



➢ Task: list all the nodes in the tree

Two types of traversals:

❖ Depth-first: we completely traverse one sub-tree 
before exploring a sibling sub-tree

❖ Breadth-first: We traverse all nodes at one level 
before progressing to the next level

Tree traversals



➢ In-order
➢ Pre-order
➢ Post-order

Depth-first tree traversals



Depth-first: in order

Algorithm InOrderTraversal(tree)

if tree == Null :  

return

InOrderTraversal(tree.left)  

print (tree.key )  

InOrderTraversal(tree.right)

left - me - right

1

2

3



Which sequence of 
nodes is obtained as a 
result of in-order 
traversal of the tree on 
the left?

A . a b d h i e c fg

B . h d i b e a fc g

C . a h d i b e fc g

D. More than one is correct

E. None is correct

a

b

d

h i

e

c

f g



In-order

D

B

A C

F

E G



In-order

D

B

A C

F

E G



In-order

D

B

A C

F

E G

A



In-order

D

B

A C

F

E G

A B



In-order

D

B

A C

F

E G

A B C



In-order

D

B

A C

F

E G

A B C D



In-order

D

B

A C

F

E G

A B C D



In-order

D

B

A C

F

E G

A B C D E



In-order

D

B

A C

F

E G

A B C D E F



In-order

D

B

A C

F

E G

A B C D E F G



In-order

D

B

A C

F

E G

A  B  C D  E  F  G

me, 
node D

left subtree of D right subtree of D



Algorithm PreOrderTraversal(tree)

if tree == null: 

return

print (tree.key )  

PreOrderTraversal(tree.left)  

PreOrderTraversal(tree.right)

me first
me → left → right

2

1

3

Depth-first: pre-order



Which sequence of 
nodes is obtained as a 
result of pre-order 
traversal of the tree on 
the left?

A . a b d h i e c fg

B . a b c d e h i fg

C . a b d h i e c fg

D. More than one is correct

E. None is correct

a

b

d

h i

e

c

f g



Pre-order

D

B

A C

F

E G

D 



Pre-order

D

B

A C

F

E G

D B 



Pre-order

D

B

A C

F

E G

D B A 



Pre-order

D

B

A C

F

E G

D B A C 



Pre-order

D

B

A C

F

E G

D B A C F 



Pre-order

D

B

A C

F

E G

D B A C F E 



Pre-order

D

B

A C

F

E G

D B A C F E G



Pre-order

D

B

A C

F

E G

D    B A C    F E G

me, 
node D

left subtree of D right subtree of D



Algorithm PostOrderTraversal(tree)

if tree == null: 

return

PostOrderTraversal(tree.left)  

PostOrderTraversal(tree.right)  

print(tree.key )

children first
left → right → me

1

3

2

Depth-first: post-order



Which sequence of 
nodes is obtained as a 
result of post-order 
traversal of the tree on 
the left?

A . a b d h i e c fg

B . a b c d e h i fg

C . h i d e b fg c a

D. More than one is correct

E. None is correct

a

b

d

h i

e

c

f g



Post-order

D

B

A C

F

E G



Post-order

D

B

A C

F

E G



Post-order

D

B

A C

F

E G

A 



Post-order

D

B

A C

F

E G

A C 



Post-order

D

B

A C

F

E G

A C B 



Post-order

D

B

A C

F

E G

A C B 



Post-order

D

B

A C

F

E G

A C B 



Post-order

D

B

A C

F

E G

A C B E 



Post-order

D

B

A C

F

E G

A C B E G 



Post-order

D

B

A C

F

E G

A C B E G F 



Post-order

D

B

A C

F

E G

A C B E G F D



Post-order

D

B

A C

F

E G

A C B E G F D
me, node D

left subtree of D right subtree of D



Breadth-first traversal

D

B

A C

F

E G

Level traversal:
D

B F
A C E G



Algorithm BreadthFirstTraversal(tree)

if tree == null:

return

Queue q  

q.enqueue(tree)

while not q.isEmpty() :

node  ← q.dequeue()

print(node)

if node.left != null:  

q.enqueue(node.left)

if node.right != null:  

q.enqueue(node.right)



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: D

Output:



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: 

Output: D



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: B F 

Output: D



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: B F 

Output: D 



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: F 

Output: D B



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: F A C 

Output: D B



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: F A C 

Output: D B



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: A C 

Output: D B F



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: A C E G 

Output: D B F



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: A C E G 

Output: D B F



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: C E G 

Output: D B F A



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: C E G 

Output: D B F A



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: E G 

Output: D B F A C



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: E G 

Output: D B F A C



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: G 

Output: D B F A C E



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: G

Output: D B F A C E



Breadth first: level 
traversal

D

B

A C

F

E G

Queue: empty 

Output: D B F A C E G



Tree data structure: notes

➢ Tree is fully defined by its root node

➢ Each node has (at least) a key and links to children

➢ Tree traversals: 

○ Depth-first: uses recursion (stack)

■ pre-order

■ in-order

■ post-order

○ Breadth-first: uses queue

➢ When working with a tree, 
recursive  algorithms are 
common

➢ In Computer Science, trees grow 
down!



Can you guess which (real) words are 

spelled by some type of traversal of these 

trees?
L

A E

R G L Y

Y

L R

G A L E

E

L G

A L R Y



Which type of traversal is used to spell 

these words?

L

A E

R G L Y

Y

L R

G A L E

L A R G E L YG A L L E R Y

E

L G

A L R Y

A L L E R G Y

A. in-order, pre-order, post-order

B. pre-order, post-order, in-order

C. post-order, in-order, pre-order

D. None of the above (something else)



For completeness: breadth-first traversal

R

E

A L

G

L Y



For completeness: breadth-first traversal

R

E

A L

G

L Y

regally


