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Recap: Quick Search ADT

Specification

A Quick Search ADT stores a number of elements each 

with a key and supports the following operations:

➔ Search(x): returns the element with the key=x

➔ Range(lo, hi): returns all elements with keys between 

lo and hi

➔ NearestNeighbor(x): returns an element with the key 

closest to x

➔ Insert(x): adds an element with key x

➔ Remove(x): removes the element with key x



Recap: binary Tree can be defined 

by a single Tree Node variable

Tree Node root stores reference to:
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Every real Tree Node has exactly two children

Each child is a Tree Node: Null node or Real node



Definition

Binary search tree is a binary tree with the following 

property:

for each node with key x, all the real nodes in its left 

subtree have keys smaller than x, and all the keys in 

its right subtree are greater* then x.
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*To simplify the discussion we will assume that all keys are unique: there 
are no equal keys

Binary Search Tree



Which one is a Binary Search Tree?
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D. None of the above



Which one is a Binary Search Tree?
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BST: read operations

➢ Search (k): returns tree node with key k

➢ Successor (k): finds and returns the node in the tree with the 

smallest key among all keys greater than k - i.e. finds the node 

with the next to k key in the list of sorted keys

➢ Predecessor (k): same as successor, but from the left of k -

finds and returns the node with the key immediately preceding 

k in the sorted list of all keys

➢ Range (lo, hi): returns the list of all tree nodes with keys 

between lo and hi (inclusive) 

All these operations do not modify the tree



Algorithm Search

Input:Key k,  Tree Node R of BST 

Output: The node with key k



Example: search (6, node R)
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Example: search (6, node R)
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Example: search (6, node R)
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Algorithm Search (k, R)

if R.Key =  k:  return R

if R.Key > k :

return Search(k, R.Left)  

else if R.Key < k :

return Search(k, R.Right)

Recursive algorithms are common and are easier 
to design that the corresponding non-recursive 

algorithms
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Example: search (5, R)

Missing key: return Null Node



Algorithm Search (k, R)

if R is Null or R.Key =  k:  

return R

if R.Key > k :

return Search(k, R.Left)  

else if R.Key < k :

return Search(k, R.Right)

Updated for the case of missing key
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Missing key: search(5, R)

Note: If your search ended with the Null Node, this 
is the the place in the tree where k would fit.



Next in order

• BST represents the order of keys used for Binary Search

• In-order traversal of BST gets the keys in sorted order

• Can we find the next key in the sorted sequence of keys 

without explicitly recovering the sorted sequence?

In-order traversal: 

1 2 5 7 10

What is the next after 5?



Algorithm Successor

Input: key k

Output: The node in the tree with the 
next larger key.

Given a node N in a Binary Search Tree 

- find nodes with adjacent keys

Algorithm Predecessor

Input: key k

Output: The node in the tree with the 
previous smaller key.



Algorithm Successor

Input: key k

Output: The node in the tree with the 
next larger key.

● We want to find the node with the key which is 
closest to k from above

● To solve this we first need an algorithm for finding 
min key in a given tree: getMin

K

Sorted keys

> k< k



In search for min

5

R

If we are currently at the root R of 
the BST, where can we find the 
node with the minimum key?

A. In the right subtree of R

B. In the left subtree of R

C. The min can be in either 

right or left subtree: 

depending on the tree



Sub-operation: getMin (node N)
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➢ We want the node with 
the smallest key in a 
subtree rooted at N



Sub-operation: getMin (node N)
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➢ We want the node with 
the smallest key in a 
subtree rooted at N

➢ Among all descendants 
of node N the only keys 
that are < X are in the 
left subtree of N



Example: getMin (N)
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Yes → there is a 
key smaller than 5

➔ Set N to be the left 
child and ask the 
same question 
(recursion!)



Example: getMin (N)
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➔ Does node N have 
left child?
Yes → there is a 
key smaller than 3

➔ Set N to be the left 
child and ask the 
same question



Example: getMin (N)
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➔ Does node N have 
left child?
No → there is no 
key smaller than N

➔ N’s key is the min

Follow the leftmost path in the tree - until N’s left child 
becomes Null



Algorithm getMin (N)

if N is Null:

ERROR: empty tree

if N.Left is Null:

return N

else:

return getMin (N.Left)
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Successor (k) 

First, locate node N with key k
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In search for Successor (k) 

If node N with key k is the right child of its parent, we 
should search for its successor:

N

...

A. In the right subtree of N

B. In the left subtree of N

C. In the left subtree of the N’s 

parent

D. None of the above 

(somewhere else)
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Case 1A: N has right child and is by itself a 
right child of its parent

p < kAll these keys 
are even < p

nodes < k

➢ In this situation all keys > 
k are in the right subtree 
of NN
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Case 1B: Node N has the right child, but N is a 
left child of its parent P with p > k

s ...

> p< p

> k and < p

➢ In this situation there are also 
keys > k in the parent of N and 
in the right subtree of the 
parent

➢ However we are looking for the 
smallest among these keys

➢ The min among all keys > k is 
again in the right subtree of N -
because the keys in this 
subtree are precisely between 
k and p

N
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Combined Case 1: Node N has the right child

s ...

> p< p

> k and < p

➢ The goal then becomes to find 
the smallest among all the keys 
in the right subtree of N

➢ Use getMin (N.right)

N

Successor of N



Algorithm Successor (k, R)

if R.Key = k : # found N

if R.Right != Null:
return getMin(R.Right)

...

if k < R.Key: # continue searching for N

return Successor (k, R.Left)

...   

if k > R.Key : # continue searching for N

return Successor (k, R.Right)  

...



Example: successor (5, R)
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Example: successor (5, R)
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➔ Follow the left subtree: 
5 < 14

➔ Found 5



Example: successor (5, R)
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➔ Follow the left subtree: 
5 < 14

➔ Found 5

What is successor of 5?



Example: successor (5, R)
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➔ Follow the left subtree: 
5 < 14

➔ Found 5

➔ N has right child



Example: successor (5, R)
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min

➔ Follow the left subtree: 
5 < 14

➔ Found 5

➔ N has right child

➔Min in the subtree 
rooted at 9 is the 
successor of 5

successor (5, R)→8
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Case 2: Node N with key k does NOT have the right 
child, but it is by itself in the left subtree of some 
parent node P

> p< p

➢ In this case the successor of N is 
among N’s ancestors

➢ Namely the last time we took 
the turn to left subtree - the 
key at the root of this subtree is 
the successor of N

➢ If we do not have a parent field 
in our Node, then we cannot 
recover this parent

➢ Instead, we will keep track of 
the last time when we took the 
left turn in the search for N

N



Algorithm Successor (k, R, S)

if R.Key = k : # found N

if R.Right != Null:
return getMin(R.Right)

else:

return S

if k < R.Key : # left turn

S ← R # remember the parent

return Successor (k, R.Left,S) 

if k > R.Key:

return Successor (k,  R.Right,S)  

You start this algorithm with R = root of BST 
and S (successor) set to Null



Algorithm Successor (k, R, S)

if R.Key = k : # found N

if R.Right != Null:
return getMin(R.Right)

else:

return S

if k < R.Key : # left turn

S ← R # remember the parent

return Successor (k, R.Left,S) 

if k > R.Key:

return Successor (k,  R.Right,S)  

What happens if k is not in the tree?
Can we find the next value to k?



Algorithm Successor (k, R, S)

if R = Null:# k is not in the tree

return S # Null node has no right child

if R.Key = k : # found N

if R.Right != Null:
return getMin (R.Right)

else:

return S

if k < R.Key : # left turn

S ← R # remember the parent

return Successor (k, R.Left,S) 

if k > R.Key:

return Successor (k,  R.Right,S)  



Example: Successor (10, R)

➔ 10 has right subtree
➔ Successor is the min in 

this right subtree:
Successor (10) → 12
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Example: Successor (6, R)

➔While searching for 6: we 
update a possible candidate 
for successor (first 10, then 
7) - because we do not know 
if N will have a right subtree 
or not

➔ 6 does not have the right 
subtree

➔ Successor is the last ancestor 
of 6 when we moved into 
the left subtree:

Successor (6) → 7
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Example: Successor (16, R)

➔While searching for 16: we 
never took the left turn

➔ 16 does not have the right 
subtree

➔ 16 also does not have a 
successor - it is the largest 
key in the tree!

Successor (16) → Null
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Example: Successor (3, R)

➔While searching for 3: we 
took the left turn first at 10 
then at 5

➔We did not find 3 but found 
a null node instead

➔We return the next larger 
number:

Successor (3) → 5
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Algorithm Range 

Input:Keys lo, hi, root R

Output: A list of nodes with keys between lo and hi

Now that we know how to find a successor, 
we can solve the range query



Algorithm RangeSearch (lo , hi , R)

L ← empty list

N ← Successor (lo , R)  

while N is not Null and N.Key ≤ hi 

L ← L + N

N ← Successor (N.Key, R, Null)

return L



Example: range search (5, 13)
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Example: range search (5, 13)
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Find 5
5 is within range

Result: 5



Example: range search (5, 13)
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6 is within range

Result: 5, 6



Example: range search (5, 13)
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Result: 5, 6, 7



Example: range search (5, 13)
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Find successor (7) → 10
10 is within range

Result: 5, 6, 7, 10



Example: range search (5, 13)
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Find successor (10) → 12
12 is within range

Result: 5, 6, 7, 10, 12



Example: range search (5, 13)
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Find successor (12) → 14
14 is outside range
Stop

Result: 5, 6, 7, 10, 12



Algorithm Predecessor (k, R…)

if R.Key = k : # found N

if R.Right != Null:
return Get_min (R.Right)

…

if k < R.Key :

…

return Predecessor (k, R.Left…) 

if k > R.Key:

…

return Predecessor (k,  R.Right…)  

Fill in blanks:

A. right getMin right

B. left getMin left

C. left getMax left

D. left Predecessor left

E. None of the above


