
Binary Search Trees

Read operations
Lecture 18

by Marina Barsky

linked listarray

Collection ADT

• Collection ADT is a general storage structure where order of elements is not

necessarily maintained

• Supports addition, removal and retrieval of elements

Collection

Sequence Quick Search

List Queue

LIFO: Stack FIFO: Queue

linked list

array

linked list

array

tree

Physical

implemen

tations

Java Collections

Recap: Quick Search ADT

Specification

A Quick Search ADT stores a number of elements each

with a key and supports the following operations:

➔ Search(x): returns the element with the key=x

➔ Range(lo, hi): returns all elements with keys between

lo and hi

➔ NearestNeighbor(x): returns an element with the key

closest to x

➔ Insert(x): adds an element with key x

➔ Remove(x): removes the element with key x

Recap: binary Tree can be defined

by a single Tree Node variable

Tree Node root stores reference to:

data

Real Node

Null

Null Node

OR

k
e

y

Conceptual node

No content

Tree

Node
Tree

Node

Tree

Node

Every real Tree Node has exactly two children

Each child is a Tree Node: Null node or Real node

Definition

Binary search tree is a binary tree with the following

property:

for each node with key x, all the real nodes in its left

subtree have keys smaller than x, and all the keys in

its right subtree are greater* then x.

3

1

2

5

4

C

A

B

E

D

*To simplify the discussion we will assume that all keys are unique: there
are no equal keys

Binary Search Tree

Which one is a Binary Search Tree?

4

7

5

6

8

2

1 3

4

3

2

7

5

6

5

2

1

4

3

8

6

71

A B C

D. None of the above

Which one is a Binary Search Tree?

4

7

5

6

8

2

1 3

4

3

2

7

5

6

5

2

1

4

3

8

6

71

A B C

BST: read operations

➢ Search (k): returns tree node with key k

➢ Successor (k): finds and returns the node in the tree with the

smallest key among all keys greater than k - i.e. finds the node

with the next to k key in the list of sorted keys

➢ Predecessor (k): same as successor, but from the left of k -

finds and returns the node with the key immediately preceding

k in the sorted list of all keys

➢ Range (lo, hi): returns the list of all tree nodes with keys

between lo and hi (inclusive)

All these operations do not modify the tree

Algorithm Search

Input:Key k, Tree Node R of BST

Output: The node with key k

Example: search (6, node R)

7

4

1 6

13

10 15

6

6 < 7
Left child of 7 becomes R

R

Example: search (6, node R)

7

4

1 6

13

10 15

6

6 > 4
Right child of 4 becomes R

R

Example: search (6, node R)

7

4

1 6

13

10 15

6

6 = 6
Return node R

R

Algorithm Search (k, R)

if R.Key = k: return R

if R.Key > k :

return Search(k, R.Left)

else if R.Key < k :

return Search(k, R.Right)

Recursive algorithms are common and are easier
to design that the corresponding non-recursive

algorithms

7

4

1 6

13

10 15

5

Example: search (5, R)

Missing key: return Null Node

Algorithm Search (k, R)

if R is Null or R.Key = k:

return R

if R.Key > k :

return Search(k, R.Left)

else if R.Key < k :

return Search(k, R.Right)

Updated for the case of missing key

7

4

1 6

13

10 15

5

Missing key: search(5, R)

Note: If your search ended with the Null Node, this
is the the place in the tree where k would fit.

Next in order

• BST represents the order of keys used for Binary Search

• In-order traversal of BST gets the keys in sorted order

• Can we find the next key in the sorted sequence of keys

without explicitly recovering the sorted sequence?

In-order traversal:

1 2 5 7 10

What is the next after 5?

Algorithm Successor

Input: key k

Output: The node in the tree with the
next larger key.

Given a node N in a Binary Search Tree

- find nodes with adjacent keys

Algorithm Predecessor

Input: key k

Output: The node in the tree with the
previous smaller key.

Algorithm Successor

Input: key k

Output: The node in the tree with the
next larger key.

● We want to find the node with the key which is
closest to k from above

● To solve this we first need an algorithm for finding
min key in a given tree: getMin

K

Sorted keys

> k< k

In search for min

5

R

If we are currently at the root R of
the BST, where can we find the
node with the minimum key?

A. In the right subtree of R

B. In the left subtree of R

C. The min can be in either

right or left subtree:

depending on the tree

Sub-operation: getMin (node N)

p

...

... ...

X

... ...

...

N

➢ We want the node with
the smallest key in a
subtree rooted at N

Sub-operation: getMin (node N)

p

...

... ...

X

... ...

...

N

➢ We want the node with
the smallest key in a
subtree rooted at N

➢ Among all descendants
of node N the only keys
that are < X are in the
left subtree of N

Example: getMin (N)

5

3

1 4

9

12

10 13

14

8

N ➔ Does node N have
left child?
Yes → there is a
key smaller than 5

➔ Set N to be the left
child and ask the
same question
(recursion!)

Example: getMin (N)

5

3

1 4

9

12

10 13

14

8

N

➔ Does node N have
left child?
Yes → there is a
key smaller than 3

➔ Set N to be the left
child and ask the
same question

Example: getMin (N)

5

3

1 4

9

12

10 13

14

8

N

➔ Does node N have
left child?
No → there is no
key smaller than N

➔ N’s key is the min

Follow the leftmost path in the tree - until N’s left child
becomes Null

Algorithm getMin (N)

if N is Null:

ERROR: empty tree

if N.Left is Null:

return N

else:

return getMin (N.Left)

p

...

... ...

k

...

Successor (k)

First, locate node N with key k

N

...

p

...

... ...

k

...

In search for Successor (k)

If node N with key k is the right child of its parent, we
should search for its successor:

N

...

A. In the right subtree of N

B. In the left subtree of N

C. In the left subtree of the N’s

parent

D. None of the above

(somewhere else)

p

...

... ...

k

... ...

Case 1A: N has right child and is by itself a
right child of its parent

p < kAll these keys
are even < p

nodes < k

➢ In this situation all keys >
k are in the right subtree
of NN

p

k

... ...

...

... ...

Case 1B: Node N has the right child, but N is a
left child of its parent P with p > k

s ...

> p< p

> k and < p

➢ In this situation there are also
keys > k in the parent of N and
in the right subtree of the
parent

➢ However we are looking for the
smallest among these keys

➢ The min among all keys > k is
again in the right subtree of N -
because the keys in this
subtree are precisely between
k and p

N

p

k

... ...

...

... ...

Combined Case 1: Node N has the right child

s ...

> p< p

> k and < p

➢ The goal then becomes to find
the smallest among all the keys
in the right subtree of N

➢ Use getMin (N.right)

N

Successor of N

Algorithm Successor (k, R)

if R.Key = k : # found N

if R.Right != Null:
return getMin(R.Right)

...

if k < R.Key: # continue searching for N

return Successor (k, R.Left)

...

if k > R.Key : # continue searching for N

return Successor (k, R.Right)

...

Example: successor (5, R)

5

3

4

9

12

10 13

14

8

R ➔ Follow the left subtree:
5 < 14

Example: successor (5, R)

5

3

4

9

12

10 13

14

8

N

➔ Follow the left subtree:
5 < 14

➔ Found 5

Example: successor (5, R)

5

3

4

9

12

10 13

14

8

N

➔ Follow the left subtree:
5 < 14

➔ Found 5

What is successor of 5?

Example: successor (5, R)

5

3

4

9

12

10 13

14

8

N

N.right

➔ Follow the left subtree:
5 < 14

➔ Found 5

➔ N has right child

Example: successor (5, R)

5

3

4

9

12

10 13

14

8

R

N.right

min

➔ Follow the left subtree:
5 < 14

➔ Found 5

➔ N has right child

➔Min in the subtree
rooted at 9 is the
successor of 5

successor (5, R)→8

p

k

...

...

... ...

Case 2: Node N with key k does NOT have the right
child, but it is by itself in the left subtree of some
parent node P

> p< p

➢ In this case the successor of N is
among N’s ancestors

➢ Namely the last time we took
the turn to left subtree - the
key at the root of this subtree is
the successor of N

➢ If we do not have a parent field
in our Node, then we cannot
recover this parent

➢ Instead, we will keep track of
the last time when we took the
left turn in the search for N

N

Algorithm Successor (k, R, S)

if R.Key = k : # found N

if R.Right != Null:
return getMin(R.Right)

else:

return S

if k < R.Key : # left turn

S ← R # remember the parent

return Successor (k, R.Left,S)

if k > R.Key:

return Successor (k, R.Right,S)

You start this algorithm with R = root of BST
and S (successor) set to Null

Algorithm Successor (k, R, S)

if R.Key = k : # found N

if R.Right != Null:
return getMin(R.Right)

else:

return S

if k < R.Key : # left turn

S ← R # remember the parent

return Successor (k, R.Left,S)

if k > R.Key:

return Successor (k, R.Right,S)

What happens if k is not in the tree?
Can we find the next value to k?

Algorithm Successor (k, R, S)

if R = Null:# k is not in the tree

return S # Null node has no right child

if R.Key = k : # found N

if R.Right != Null:
return getMin (R.Right)

else:

return S

if k < R.Key : # left turn

S ← R # remember the parent

return Successor (k, R.Left,S)

if k > R.Key:

return Successor (k, R.Right,S)

Example: Successor (10, R)

➔ 10 has right subtree
➔ Successor is the min in

this right subtree:
Successor (10) → 12

10

5

1 7

14

12 16

6

Example: Successor (6, R)

➔While searching for 6: we
update a possible candidate
for successor (first 10, then
7) - because we do not know
if N will have a right subtree
or not

➔ 6 does not have the right
subtree

➔ Successor is the last ancestor
of 6 when we moved into
the left subtree:

Successor (6) → 7

10

5

1 7

14

12 16

6

Example: Successor (16, R)

➔While searching for 16: we
never took the left turn

➔ 16 does not have the right
subtree

➔ 16 also does not have a
successor - it is the largest
key in the tree!

Successor (16) → Null

10

5

1 7

14

12 16

6

Example: Successor (3, R)

➔While searching for 3: we
took the left turn first at 10
then at 5

➔We did not find 3 but found
a null node instead

➔We return the next larger
number:

Successor (3) → 5

10

5

1 7

14

12 16

6

Algorithm Range

Input:Keys lo, hi, root R

Output: A list of nodes with keys between lo and hi

Now that we know how to find a successor,
we can solve the range query

Algorithm RangeSearch (lo , hi , R)

L ← empty list

N ← Successor (lo , R)

while N is not Null and N.Key ≤ hi

L ← L + N

N ← Successor (N.Key, R, Null)

return L

Example: range search (5, 13)

10

5

1 7

14

12 16

6

Example: range search (5, 13)

10

5

1 7

14

12 16

6

Find 5
5 is within range

Result: 5

Example: range search (5, 13)

10

5

1 7

14

12 16

6 Find successor (5) → 6
6 is within range

Result: 5, 6

Example: range search (5, 13)

10

5

1 7

14

12 16

6
Find successor (6) → 7
7 is within range

Result: 5, 6, 7

Example: range search (5, 13)

10

5

1 7

14

12 16

6

Find successor (7) → 10
10 is within range

Result: 5, 6, 7, 10

Example: range search (5, 13)

10

5

1 7

14

12 16

6
Find successor (10) → 12
12 is within range

Result: 5, 6, 7, 10, 12

Example: range search (5, 13)

10

5

1 7

14

12 16

6

Find successor (12) → 14
14 is outside range
Stop

Result: 5, 6, 7, 10, 12

Algorithm Predecessor (k, R…)

if R.Key = k : # found N

if R.Right != Null:
return Get_min (R.Right)

…

if k < R.Key :

…

return Predecessor (k, R.Left…)

if k > R.Key:

…

return Predecessor (k, R.Right…)

Fill in blanks:

A. right getMin right

B. left getMin left

C. left getMax left

D. left Predecessor left

E. None of the above

