Binary Search Trees Read operations

Lecture 18 by Marina Barsky

Collection ADT

- Collection ADT is a general storage structure where order of elements is not necessarily maintained
- Supports addition, removal and retrieval of elements

Java Collections

Recap: Quick Search ADT

Specification

A **Quick Search ADT** stores a number of elements each with a *key* and supports the following operations:

- → Search(x): returns the element with the key=x
- → Range(Io, hi): returns all elements with keys between Io and hi
- → NearestNeighbor(x): returns an element with the key closest to x
- \rightarrow **Insert**(x): adds an element with key x
- \rightarrow *Remove*(*x*): removes the element with key *x*

Recap: binary Tree can be defined by a single Tree Node variable

Tree Node root stores reference to:

Every real *Tree Node* has exactly two children Each child is a Tree Node: Null node or Real node

Binary Search Tree

Definition

Binary search tree is a binary tree with the following property: for each node with key *x*, all the real nodes in its **left subtree** have keys **smaller than** *x*, and all the keys in its **right subtree** are **greater* then** *x*.

*To simplify the discussion we will assume that all keys are unique: there are no equal keys

Which one is a Binary Search Tree?

Α

В

С

D. None of the above

Which one is a Binary Search Tree?

BST: read operations

- > Search (k): returns tree node with key k
- Successor (k): finds and returns the node in the tree with the smallest key among all keys greater than k - i.e. finds the node with the next to k key in the list of sorted keys
- Predecessor (k): same as successor, but from the left of k finds and returns the node with the key immediately preceding k in the sorted list of all keys
- Range (*Io*, *hi*): returns the list of all tree nodes with keys between *Io* and *hi* (inclusive)

All these operations do not modify the tree

Algorithm *Search*

Input: Key *k*, Tree Node *R* of BST **Output**: The node with key *k*

Example: search (6, node R)

6 < 7 Left child of 7 becomes R

Example: search (6, node R)

Example: search (6, node R)

Algorithm Search (k, R)
if R.Key = k: return R
if R.Key > k:
return Search(k, R.Left)
else if R.Key < k:
return Search(k, R.Right)</pre>

Recursive algorithms are common and are easier to design that the corresponding non-recursive algorithms

Example: search (5, R)

Missing key: return Null Node

Updated for the case of missing key

Algorithm Search (k, R)
if R is Null or R.Key = k:
 return R
if R.Key > k:
 return Search(k, R.Left)
else if R.Key < k:
 return Search(k, R.Right)</pre>

Missing key: search(5, R)

Note: If your search ended with the Null Node, this is the the place in the tree where *k* would fit.

Next in order

- BST represents the order of keys used for Binary Search
- In-order traversal of BST gets the keys in sorted order

In-order traversal: 1 2 5 7 10

What is the next after 5?

• Can we find the next key in the sorted sequence of keys without explicitly recovering the sorted sequence?

Given a node *N* in a Binary Search Tree - find nodes with adjacent keys

Algorithm Successor

Input: key k Output: The node in the tree with the next larger key.

Algorithm **Predecessor**

Input: key *k* Output: The node in the tree with the previous smaller key.

Algorithm *Successor*

Input: key k Output: The node in the tree with the next larger key.

- We want to find the node with the key which is closest to *k* from above
- To solve this we first need an algorithm for finding min key in a given tree: *getMin*

In search for min

If we are currently at the root R of the BST, where can we find the node with the minimum key?

- A. In the **right** subtree of R
- B. In the **left** subtree of R
- C. The *min* can be in **either right or left** subtree: depending on the tree

Sub-operation: *getMin* (node N)

We want the node with the smallest key in a subtree rooted at N

Sub-operation: *getMin* (node N)

- We want the node with the smallest key in a subtree rooted at N
- Among all descendants of node N the only keys that are < X are in the left subtree of N

Example: getMin (N)

- → Does node N have left child?
 Yes → there is a key smaller than 5
- → Set N to be the left child and ask the same question (recursion!)

Example: getMin (N)

- → Does node N have left child?
 Yes → there is a key smaller than 3
- → Set N to be the left child and ask the same question

Example: getMin (N)

- → Does node N have left child?
 No → there is no key smaller than N
- \rightarrow N's key is the min

Follow the leftmost path in the tree - until N's left child becomes Null

```
Algorithm getMin (N)
if N is Null:
    ERROR: empty tree
if N.Left is Null:
    return N
else:
    return getMin (N.Left)
```

Successor (k)

First, locate node N with key k

In search for Successor (k)

If node N with key k is the right child of its parent, we should search for its successor:

- A. In the **right** subtree of N
- B. In the left subtree of N
- C. In the **left subtree** of the N's **parent**
- D. None of the above (somewhere else)

Case 1A: *N* has right child and is by itself a right child of its parent

In this situation all keys > k are in the right subtree of N

Case 1B: Node N has the right child, but N is a left child of its parent P with p > k

- In this situation there are also keys > k in the parent of N and in the right subtree of the parent
- However we are looking for the smallest among these keys
- The min among all keys > k is again in the right subtree of N because the keys in this subtree are precisely between k and p

Combined Case 1: Node N has the right child

- The goal then becomes to find the smallest among all the keys in the right subtree of N
- ➤ Use getMin (N.right)

Algorithm Successor (k, R)
if R.Key = k : # found N
 if R.Right != Null:
 return getMin(R.Right)

. . .

if k < R.Key: # continue searching for N
return Successor(k, R.Left)</pre>

if k > R.Key: # continue searching for N
return Successor(k, R.Right)

Example: successor (5, R)

→ Follow the left subtree: 5 < 14</p>

Example: successor (5, R)

→ Follow the left subtree: 5 < 14</p>

 \rightarrow Found 5

Example: successor (5, R)

- → Follow the left subtree: 5 < 14</p>
- \rightarrow Found 5

What is successor of 5?

Example: successor (5, R)

- → Follow the left subtree: 5 < 14</p>
- \rightarrow Found 5
- \rightarrow N has right child

Example: successor (5, R)

- → Follow the left subtree: 5 < 14</p>
- \rightarrow Found 5
- \rightarrow N has right child
- → Min in the subtree rooted at 9 is the successor of 5

successor (5, R) \rightarrow 8

Case 2: Node *N* with key *k* does NOT have the right child, but it is by itself in the left subtree of some parent node P

- In this case the successor of N is among N's ancestors
- Namely the last time we took the turn to left subtree - the key at the root of this subtree is the successor of N
- If we do not have a parent field in our Node, then we cannot recover this parent
- Instead, we will keep track of the last time when we took the left turn in the search for N

```
Successor -
initially Null
```

```
Algorithm Successor (k, R, S)
if R.Key = k : # found N
      if R.Right != Null:
            return getMin(R.Right)
      else:
            return S
if k < R.Key: # left turn
      S \leftarrow R \# remember the parent
      return Successor (k, R.Left, S)
if k > R.Key:
      return Successor (k, R.Right, S)
```

You start this algorithm with *R* = root of BST and *S* (successor) set to Null

```
Successor -
initially Null
```

```
Algorithm Successor (k, R, S)
if R.Key = k : # found N
      if R.Right != Null:
            return getMin(R.Right)
      else:
            return S
if k < R.Key: # left turn
      S \leftarrow R \# remember the parent
      return Successor (k, R.Left, S)
if k > R.Key:
      return Successor (k, R.Right, S)
```

What happens if *k* is not in the tree? Can we find the next value to k? Algorithm Successor (k, R, S) if R = Null: # k is not in the tree return S # Null node has no right child if *R*.Key = *k* **: # found N** if *R*.Right != Null: return **getMin (R.**Right) else: return Sif *k* < *R*.Key: # left turn $S \leftarrow R \#$ remember the parent return Successor (k, R.Left, S) if k > R.Key: return Successor (k, R.Right, S)

Example: Successor (10, R)

- → 10 has right subtree
- → Successor is the min in this right subtree: Successor (10) → 12

Example: Successor (6, R)

- → While searching for 6: we update a possible candidate for successor (first 10, then 7) because we do not know if N will have a right subtree or not
- → 6 does not have the right subtree
- → Successor is the last ancestor of 6 when we moved into the left subtree:

Successor (6) \rightarrow 7

Example: *Successor* (16, R)

- → While searching for 16: we never took the left turn
- → 16 does not have the right subtree
- → 16 also does not have a successor it is the largest key in the tree!

Successor (16) \rightarrow Null

Example: Successor (3, R)

- → While searching for 3: we took the left turn first at 10 then at 5
- → We did not find 3 but found a null node instead
- → We return the next larger number:

Successor (3) \rightarrow 5

Now that we know how to find a successor, we can solve the range query

Algorithm *Range*

Input: Keys *lo, hi,* root *R* Output: A list of nodes with keys between *lo* and *hi* Algorithm RangeSearch (lo, hi, R)

 $L \leftarrow empty list$

 $N \leftarrow Successor(lo, R)$ while N is not Null and $N.Key \leq hi$ $L \leftarrow L + N$ $N \leftarrow Successor(N.Key, R, Null)$ return L

Result: 5

Result: 5, 6

Result: 5, 6, 7

Result: 5, 6, 7, 10

Result: 5, 6, 7, 10, 12

Result: 5, 6, 7, 10, 12

Fill in blanks:

Α.	right	getMin	right
В.	left	getMin	left
C.	left	getMax	left
D.	left	Predecessor	left

E. None of the above

