Binary Search Trees Read operations

Lecture 18
by Marina Barsky

Collection ADT

- Collection ADT is a general storage structure where order of elements is not necessarily maintained
- Supports addition, removal and retrieval of elements

Java Collections

Recap: Quick Search ADT

Specification

A Quick Search ADT stores a number of elements each with a key and supports the following operations:
$\rightarrow \quad \operatorname{Search}(x)$: returns the element with the key=x
$\rightarrow \quad$ Range(lo, hi): returns all elements with keys between 10 and hi
$\rightarrow \quad$ NearestNeighbor(x): returns an element with the key closest to x
$\rightarrow \quad \operatorname{Insert}(x)$: adds an element with key x
\rightarrow Remove (x) : removes the element with key x

Recap: binary Tree can be defined by a single Tree Node variable

Tree Node root stores reference to:

Every real Tree Node has exactly two children
Each child is a Tree Node: Null node or Real node

Binary Search Tree

Definition

Binary search tree is a binary tree with the following property:
for each node with key \boldsymbol{x}, all the real nodes in its left subtree have keys smaller than x, and all the keys in its right subtree are greater* then x.

*To simplify the discussion we will assume that all keys are unique: there are no equal keys

Which one is a Binary Search Tree?

A

B

C
D. None of the above

Which one is a Binary Search Tree?

BST: read operations

> Search (k): returns tree node with key k
$>$ Successor (k): finds and returns the node in the tree with the smallest key among all keys greater than k - i.e. finds the node with the next to k key in the list of sorted keys
> Predecessor (\boldsymbol{k}): same as successor, but from the left of k finds and returns the node with the key immediately preceding k in the sorted list of all keys
$>$ Range (lo, hi): returns the list of all tree nodes with keys between lo and $h i$ (inclusive)

Algorithm Search

Input: Key k, Tree Node R of BST
Output: The node with key k

Example: search (6, node R)

$6<7$
Left child of 7 becomes R

Example: search (6, node R)

$6>4$
Right child of 4 becomes R

Example: search (6, node R)

Algorithm Search (k, R)
 if R.Key $=k$: return R
 if R.Key >k:
 return $\operatorname{Search}(k, R$.Left)
 else if R.Key < k :
 return $\boldsymbol{S e a r c h}(k$, R.Right)

Recursive algorithms are common and are easier to design that the corresponding non-recursive algorithms

Example: search (5, R)

Missing key: return Null Node

Updated for the case of missing key

```
Algorithm Search (k, R)
if R is Null or R.Key = k:
    return R
if R.Key > k:
    return Search(k, R.Left)
else if R.Key < k:
    return Search(k, R.Right)
```


Missing key: search(5, R)

Note: If your search ended with the Null Node, this is the the place in the tree where k would fit.

Next in order

- BST represents the order of keys used for Binary Search
- In-order traversal of BST gets the keys in sorted order

In-order traversal: 125710

What is the next after 5 ?

- Can we find the next key in the sorted sequence of keys without explicitly recovering the sorted sequence?

Given a node N in a Binary Search Tree
 - find nodes with adjacent keys

Algorithm Successor

Input: key k
Output: The node in the tree with the next larger key.

Algorithm Predecessor

Input: key k
Output: The node in the tree with the previous smaller key.

Algorithm Successor
 Input: key k
 Output: The node in the tree with the next larger key.

- We want to find the node with the key which is closest to k from above
- To solve this we first need an algorithm for finding min key in a given tree: getMin

In search for min

If we are currently at the root R of the BST, where can we find the node with the minimum key?
A. In the right subtree of R
B. In the left subtree of R
C. The min can be in either right or left subtree: depending on the tree

Sub-operation: getMin (node N)

> We want the node with the smallest key in a subtree rooted at N

Sub-operation: getMin (node N)

$>$ We want the node with the smallest key in a subtree rooted at N
> Among all descendants of node N the only keys that are $<X$ are in the left subtree of N

Example: getMin (N)

\rightarrow Does node N have left child? Yes \rightarrow there is a key smaller than 5
\rightarrow Set N to be the left child and ask the same question (recursion!)

Example: getMin (N)

\rightarrow Does node N have left child?
Yes \rightarrow there is a
key smaller than 3
\rightarrow Set N to be the left child and ask the same question

Example: getMin (N)

\rightarrow Does node N have left child?
No \rightarrow there is no
key smaller than N
\rightarrow N's key is the min

Follow the leftmost path in the tree - until N's left child becomes Null

Algorithm getMin (N)
if N is Null:
ERROR: empty tree

$$
\begin{aligned}
& \text { if } N \text {.Left is Null: } \\
& \text { return } N
\end{aligned}
$$

else:
return getMin (N.Left)

Successor (k)

First, locate node N with key k

In search for Successor (k)

If node N with key k is the right child of its parent, we should search for its successor:

A. In the right subtree of N
B. In the left subtree of N
C. In the left subtree of the N's parent
D. None of the above (somewhere else)

Case 1A: N has right child and is by itself a right child of its parent

~In this situation all keys > k are in the right subtree of N

Case $1 B$: Node N has the right child, but N is a left child of its parent P with $p>k$

$>$ In this situation there are also keys $>k$ in the parent of N and in the right subtree of the parent
> However we are looking for the smallest among these keys
$>$ The min among all keys $>k$ is again in the right subtree of N because the keys in this subtree are precisely between k and p

Combined Case 1: Node N has the right child

> The goal then becomes to find the smallest among all the keys in the right subtree of N
$>$ Use getMin (N.right)

Algorithm Successor (k, R)
if R.Key = k: \# found N
if R.Right!= Null:
return getMin(R.Right)
if $k<R$. Key: \# continue searching for N return Successor (k, R.Left)
if $k>R$. Key : \# continue searching for N return Successor (k, R.Right)

Example: successor (5, R)

Example: successor (5, R)

Example: successor (5, R)

\rightarrow Follow the left subtree: $5<14$
\rightarrow Found 5
What is successor of 5 ?

Example: successor (5, R)

\rightarrow Follow the left subtree:
$5<14$
\rightarrow Found 5
$\rightarrow N$ has right child

Example: successor (5, R)

\rightarrow Follow the left subtree: $5<14$
\rightarrow Found 5
$\rightarrow N$ has right child
\rightarrow Min in the subtree rooted at 9 is the successor of 5
successor $(5, R) \rightarrow 8$

Case 2: Node N with key k does NOT have the right child, but it is by itself in the left subtree of some parent node P

$>$ In this case the successor of N is among N 's ancestors
$>$ Namely the last time we took the turn to left subtree - the key at the root of this subtree is the successor of N
$>$ If we do not have a parent field in our Node, then we cannot recover this parent
> Instead, we will keep track of the last time when we took the left turn in the search for N

```
Algorithm Successor (k, R,S)
if R.Key = k:# found N
    if R.Right!= Null:
    return getMin(R.Right)
    else:
    return S
if k<R.Key:# left turn
    S}\leftarrowR # remember the parent
    return Successor (k, R.Left,S)
if k > R.Key:
    return Successor(k, R.Right,S)
```

You start this algorithm with $R=$ root of BST and S (successor) set to Null

```
Algorithm Successor (k, R,S)
if R.Key = k:# found N
    if R.Right!= Null:
    return getMin(R.Right)
    else:
    return S
if k<R.Key:# left turn
    S}\leftarrowR # remember the parent
    return Successor (k, R.Left,S)
if k > R.Key:
    return Successor(k, R.Right,S)
```

What happens if k is not in the tree?
Can we find the next value to k ?

```
Algorithm Successor (k, R,S)
if R=Null:# k is not in the tree
    return S # Null node has no right child
if R.Key = k:# found N
    if R.Right!= Null:
                            return getMin (R.Right)
    else:
        return S
if k<R.Key:# left turn
    S}\leftarrowR# remember the paren
    return Successor (k, R.Left,S)
if k > R.Key:
    return Successor(k, R.Right,S)
```


Example: Successor (10, R)

$\rightarrow 10$ has right subtree
\rightarrow Successor is the min in this right subtree:
Successor (10) $\rightarrow 12$

Example: Successor (6, R)

\rightarrow While searching for 6: we update a possible candidate for successor (first 10, then 7) - because we do not know if N will have a right subtree or not
$\rightarrow 6$ does not have the right subtree
\rightarrow Successor is the last ancestor of 6 when we moved into the left subtree:

Successor (6) $\rightarrow 7$

Example: Successor (16, R)

\rightarrow While searching for 16: we never took the left turn
$\rightarrow 16$ does not have the right subtree
$\rightarrow 16$ also does not have a successor - it is the largest key in the tree!

Successor (16) \rightarrow Null

Example: Successor (3, R)

\rightarrow While searching for 3 : we took the left turn first at 10 then at 5
\rightarrow We did not find 3 but found a null node instead
\rightarrow We return the next larger number:

Successor (3) $\rightarrow 5$

Now that we know how to find a successor, we can solve the range query

Algorithm Range

Input: Keys lo, hi, root R
Output: A list of nodes with keys between lo and hi

Algorithm RangeSearch (lo , hi , R)

$L \leftarrow$ empty list
$N \leftarrow$ Successor (lo, R)
while N is not Null and N. Key $\leq h i$
$L \leftarrow L+N$
$N \leftarrow \operatorname{Successor}$ (N.Key, R, Null)
return L

Example: range search $(5,13)$

Example: range search $(5,13)$

Result: 5

Example: range search $(5,13)$

Result: 5, 6

Example: range search $(5,13)$

Result: 5, 6, 7

Example: range search $(5,13)$

Result: 5, 6, 7, 10

Example: range search $(5,13)$

Result: 5, 6, 7, 10, 12

Example: range search $(5,13)$

Result: 5, 6, 7, 10, 12

```
Algorithm Predecessor ( \(k, R . .\). )
if R.Key = k: \# found \(N\)
    if \(R\). != Null:
        return
        ( \(R\) )
if \(k<R\).Key:
    return Predecessor ( \(k\), R.Left...)
if \(k>R . K e y:\)
return Predecessor (k, R.Right...)
```

Fill in blanks:
A. right
B. left
C. left
D. left
E. None of the above

