Binary Search Trees
Read operations

Lecture 18
by Marina Barsky

Collection ADT

Collection

Seguence Quick Search

List

LIFO: Stack
Ay Physical

\
\
\‘ .
\\ 0
\
\ N
% N AN H
Y N implemen
\ ’ \\ l’ \\ .
\ L : : : tations
T[4 .
A

array linked list array

' |
\ \
FR-GE-ET] -EE-E

linked list linked list

array

* (Collection ADT is a general storage structure where order of elements is not
necessarily maintained
* Supports addition, removal and retrieval of elements

Java Collections

Iterable

Collection

- Interface
Class
A
: Implements

T extends

p-- ArrayList
[

|

I—- - LinkedList
|

|

|

L-- Vector

f

Stack

ArrayDeque

PriorityQueue

I
L., HashSet

-- LinkedHashSet

TreeSet

Recap: Quick Search ADT

Specification

A Quick Search ADT stores a number of elements each
with a key and supports the following operations:

-» Search(x): returns the element with the key=x

» Range(lo, hi): returns all elements with keys between
lo and hi

-» NearestNeighbor(x): returns an element with the key
closest to X

> Insert(x): adds an element with key x

> Remove(X): removes the element with key x

Recap: binary Tree can be defined
by a single Tree Node variable

Tree Node root stores reference to:

Real Node
Null Node
Null OR
Tree
/N /N
Conceptual node \/

No content

Every real Tree Node has exactly two children
Each child is a Tree Node: Null node or Real node

Binary Search Tree

Definition

Binary search tree is a binary tree with the following
property:

for each node with key x, all the real nodes in its left
subtree have keys smaller than x, and all the keys in

its right subtree are greater* then x.

% IS

*To simplify the discussion we will assume that all keys are unique: there
are no equal keys

Which one Is a Binary Search Tree?

2

@ o0 e
@@@@ @@ @é@@

D. None of the above e

Which one Is a Binary Search Tree?

o B 5
@ SRe of
@@@@ @@ @@é@@

BST: read operations

> Search (k): returns tree node with key k

> Successor (k): finds and returns the node in the tree with the
smallest key among all keys greater than k - i.e. finds the node
with the next to k key in the list of sorted keys

> Predecessor (k): same as successor, but from the left of k -
finds and returns the node with the key immediately preceding
k in the sorted list of all keys

> Range (/o, hi): returns the list of all tree nodes with keys
between /o and hi (inclusive)

All these operations do not modify the tree

Algorithm Search

Input:Key k, Tree Node R of BST
Output: The node with key k

Example: search (6, node R)

6/ — /2 R
/@\

13

1 (610 15
6<7/
Left child of 7 becomes R

Example: search (6, node R)

(7

N

6— @ @

1) (6)10 15

6>4
Right child of 4 becomes R

Example: search (6, node R)

Algorithm Search (k, R)

if R.Key = k: return R
if R.Key > K:

return Search(k, R.Left)
else if R.Key < Kk:

return Search(k, R.Right)

Recursive algorithms are common and are easier
to design that the corresponding non-recursive
algorithms

Example: search (5, R)

7
O om

160 s

15

Missing key: return Null Node

Updated for the case of missing key

Algorithm Search (k, R)
if Ris Null or R.Key = k:
return R
if R.Key > Kk
return Search(k, R.Left)
else 1if R.Key < Kk:
return Search(k, R.Right)

Missing key: search(5, R)

Note: If your search ended with the Null Node, this
is the the place in the tree where k would fit.

Next In order

 BST represents the order of keys used for Binary Search
* |In-order traversal of BST gets the keys in sorted order

(7)
In-order traversal:
o @ 125710

What is the next after 5?

 Can we find the next key in the sorted sequence of keys
without explicitly recovering the sorted sequence?

Given a node N in a Binary Search Tree
- find nodes with adjacent keys

Algorithm Successor

Input: key k

Output: The node in the tree with the
next larger key.

Algorithm Predecessor

Input: key k

Output: The node in the tree with the
previous smaller key.

<k > k

— @G . —
U Sorted keys

Algorithm Successor

Input: key k

Output: The node in the tree with the
next larger key.

e We want to find the node with the key which is
closest to k from above

® To solve this we first need an algorithm for finding
min key in a given tree: getMin

In search for min

M If we are currently at the root R of
the BST, where can we find the
/ node with the minimum key?

()

/ A. In the right subtree of R

\ \
Q Q Q B. In the left subtree of R
C. The min can be in either

\ right or left subtree:

Q depending on the tree

R

4

N

O

Sub-operation: getMin (node N)

> \We want the node with
@ the smallest key in a
/ N subtree rooted at N
/\ /\

() ()G (o
SIS

Sub-operation: getMin (node N)

P

4

)

[\ [\

() ()G G
() () (o

> We want the node with
the smallest key in a
subtree rooted at N

> Among all descendants
of node N the only keys
that are < X are in the
left subtree of N

Example: getMin (N)
=> Does node N have

left child?
e Yes - thereis a

/ key smaller than 5

@ —> Set N to be the left
/ child and ask the

N

S

7

&

\
@ @ a same question

(recursion!)

N
S

5

Example: getMin (N)

=> Does node N have
left child?

Yes = thereisa
key smaller than 3

@ —> Set N to be the left

/ child and ask the

\
@ @ same question

e

N
4

=
&

N
v

5
&)

Example: getMin (N)

@ => Does node N have
left child?
a No - thereis no
key smaller than N

g => N’s key is the min
13

Follow the leftmost path in the tree - until N’s left child
becomes Null

Algorithm getMin (N)
if Nis Null:

ERROR: empty tree

if N.Left is Null:
return N
else:

return getMin (N.Left)

Successor (k)

First, locate node N with key k

2

7N

SO

4

Q00O

In search for Successor (k)

If node N with key k is the right child of its parent, we
should search for its successor:

A. In the right subtree of N
@ B. In the left subtree of N
/ \ - N C. In the left subtree of the N's
parent
@ G D. None of the above

[

: \: CD/ Q (somewhere else)

Case 1A: N has right child and is by itself a
right child of its parent

> |n this situation all keys >
All these keys p<k k are in the right subtree

-

/ \ nodes < k / \

- ()

Case 1B: Node N has the right child, but N is a
left child of its parent P with p > k

@ > |n this situation there are also
>p keys > k in the parent of N and
N in the right subtree of the
@ @ parent

D > However we are looking for the
@ @ smallest among these keys

/N > The min among all keys > k is
@ @ again in the right subtree of N -
because the keys in this

subtree are precisely between
kand p

Combined Case 1: Node N has the right child

@ > The goal then becomes to find
\>p the smallest among all the keys
in the right subtree of N
> Use getMin (N.right)

Tk

© O ®
ole

Successor of N

Algorithm Successor (k, R)
if R.Key =Kk
if R.Right != Null:
return getMin(R.Right)

if k < R.Key:
return Successor (k, R.Left)

if kK> R.Key:
return Successor (k, R.Right)

Example: successor (5, R)

- R -> Follow the left subtree:
5<14

h

7N

&
ae

(©)

/

AN

E

5

Example: successor (5, R)

= Follow the left subtree:
5<14

-=> Found 5

Example: successor (5, R)

—> Follow the left subtree:

@ 5<14
< N - Found 5
@/ \@ What is successor of 5?
48
/

E

5

Example: successor (5, R)

= Follow the left subtree:
5<14

-=> Found 5

=> N has right child

S

3
4

<«— N.right

2
)

5@ v

Example: successor (5, R)

@ = Follow the left subtree:
5<14
«— R

-=> Found 5

/ \ => N has right child

@ @ e => Min in the subtree
\ \ rooted at 9 is the
@ successor of 5
\
@ successor (5, R)—>8

Case 2: Node N with key k does NOT have the right
child, but it is by itself in the left subtree of some
parent node P

> |n this case the successor of N is
. among N’s ancestors

N - /
> Namely the last time we took
the turn to left subtree - the

/ / key at the root of this subtree is

\
@ @ @ the successor of N

> |f we do not have a parent field
in our Node, then we cannot
recover this parent

> |nstead, we will keep track of
the last time when we took the
left turn in the search for N

Algorithm Successor (k, R, S)
if R.Key =Kk
if R.Right != Null:
return getMin(R.Right)
else:

return S
if kK < R.Key:
SR
return Successor (k, R.Left,S)
if kK > R.Key:
return Successor (k, R.Right, S)

You start this algorithm with R = root of BST
and S (successor) set to Null

Algorithm Successor (k, R, S)
if R.Key =Kk
if R.Right != Null:
return getMin(R.Right)
else:

return S
if kK < R.Key:
SR
return Successor (k, R.Left,S)
if kK > R.Key:
return Successor (k, R.Right, S)

What happens if k is not in the tree?
Can we find the next value to k?

Algorithm Successor (k, R, S)
if R = Null:

return S

if R.Key =Kk
if R.Right != Null:
return getMin (R.Right)
else.:
return S
if kK < R.Key:
SR
return Successor (k, R.Left,S)
if k > R.Key:
return Successor (k, R.Right,S)

Example: Successor (10, R)

=> 10 has right subtree
=> Successor is the min in

\ this right subtree:

@ Successor (10) - 12

D08 s

6

Example: Successor (6, R)

=> While searching for 6: we
update a possible candidate
/ \ for successor (first 10, then
7) - because we do not know

if N will have a right subtree

or not
@ @ —> 6 does not have the right

subtree

=> Successor is the last ancestor
of 6 when we moved into
the left subtree:

Successor (6) > 7

Example: Successor (16, R)

7N

5

B0E

6

=> While searching for 16: we
never took the left turn

=> 16 does not have the right
subtree

—> 16 also does not have a
successor - it is the largest
key in the tree!

Successor (16) = Null

Example: Successor (3, R)

=> While searching for 3: we
took the left turn first at 10
then at 5

- We did not find 3 but found
a null node instead

=> We return the next larger
number:

Successor (3) > 5

Now that we know how to find a successor,
we can solve the range query

Algorithm Range

Input:Keys lo, hi, root R
Output: A list of nodes with keys between (0 and hi

Algorithm RangeSearch (lo, hi , R)
L — empty list

N < Successor (o, R)
while N is not Null and N.Key < hi
L—L+ N
N < Successor (N.Key, R, Null)
return L

Example: range search (5, 13)

5

S08 @
6)

Example: range search (5, 13)

7N

Find 5
5 is within range @
[\ \

1) (1)@ 1
0

Result: 5

Example: range search (5, 13)

7N

5

[\

Find successor (5) > 6
6 is within range

Result: 5, 6

Example: range search (5, 13)

Result: 5, 6, 7

7N

5

[[\

L@@ s
o

Find successor (6) > 7
7 is within range

Example: range search (5, 13)

Find successor (7) - 10
10 is within range

7N

5

[[\

1) (1@ s
0

Result: 5, 6, 7, 10

Example: range search (5, 13)

Find successor (10) - 12
12 is within range

Result: 5, 6, 7, 10, 12

Example: range search (5, 13)

@/ \' Find successor (12) - 14
Blotet
)

Result: 5, 6, 7, 10, 12

Algorithm Predecessor (k, R...)
if R.Key =k
if R. = Null :

return (R.
if kK < R.Key:

return Predecessor (k, R.Left..)
if k> R.Key:

return Predecessor (k, R.Right..)
Fill in blanks:

A. right getMin right
B. left getMin left
C. left getMax left
D. left Predecessor left
E. None of the above

