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BST: update operations

➢ Add (k): creates a new node with key k and inserts it into the 

appropriate position of BST 

➢ Remove (k): deletes the node with key k in such a way that 

the BST property of the tree is preserved

We already have all the helper algorithms to implement these



Algorithm Add

Input:  Key k

Output: Updated BST containing a new node N with key k 



Algorithm Search (k, R)

if R is Null or R.Key =  k:  

return R

if R.Key > k :

return Search(k, R.Left)  

else if R.Key < k :

return Search(k, R.Right)

We need to slightly modify Search



Algorithm Add (k, R)

if R != Null and R.Key =  k: 

ERROR: already in the tree

if k < R.Key:

if R .left == Null:

R .left = new Node(k)

else:

Add ( k, R.left)     

if k > R.Key :

if R .right == Null:

R .right = new Node(k)

else:

Add ( k, R.right) 



Example: add (16, R)
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Example: add (16, R)
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R’ right child  is Null –
this is the place to 
insert new node
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Example: add (16, R)
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Where will be the new node N created after we 
call add (6, R) on the root R of the following 
tree?
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A. N will become the right child 

of 5

B. The left child of 7

C. The right child of 1

D. None of the above

(somewhere else)

R



Solution: add (6, R)
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Solution: add (6, R)
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Algorithm Remove

Input: Key k

Output: BST without node N with key k 

The most challenging algorithm in this module



Remove node N with key k

➢First, find N

➢Easy case (both N’s children are 
nulls)

○Replace N with a Null Node
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Remove node N with key k

➢First, find N

➢Easy case (both N’s children are 
nulls)

○Replace N with Null Node
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Remove node N with key k

➢Medium case (N has one real child):

Just “splice out” node N

○ Its unique real child assumes 
the  position previously 
occupied by  N – gets promoted 
to its place
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Example: remove(1)
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➢Medium case (N has one real child):

Just “splice out” node N

○ Its unique real child assumes 
the  position previously 
occupied by  N – gets promoted 
to its place



Example: remove(1)

3

2 5

4

1 is 
deleted

➢Medium case (N has one real child):

Just “splice out” node N

○ Its unique real child assumes 
the  position previously 
occupied by  N – gets promoted 
to its place



Remove node N with key k

➢Difficult case (both N’s children are 
real nodes):3
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Example: remove(3)

➢Difficult case (both N’s children are 
real nodes):

○ Promote 1?
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Example: remove(3)
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Not a BST!

➢Difficult case (both N’s children are 
real nodes):

○ Promote 1?



Example: remove(3)

➢Difficult case (both N’s children are 
real nodes):

○ Promote 5?
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Example: remove(3)

➢Difficult case (both N’s children are 
real nodes):

○ Promote 5?
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Remove node N with key k: difficult 
case

➢Difficult case (N has 2 real 
children):

○ We want to make as little 
changes to the tree structure 
as possible:

○ Replace node N with its 
successor (with the next larger 
key)
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Remove node N with key k: difficult 
case

➢Difficult case (N has 2 real 
children):

○ Replace node N with its 
successor (with the next larger 
key)

○ Luckily we know that N has 
the right child

○ To find successor - look for a 
min in its right subtree
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Example: remove(3)

➢Difficult case (N has 2 children):

○ Replace node N with its 
successor (with the next 
largest key)

○ To find successor - look for a 
min in its right subtree
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Example: remove(3)

➢Difficult case (N has 2 children):

○ Replace node N with its 
successor (with the next 
largest key)

○ To find successor - look for a 
min in its right subtree

○ Swap data in N and its 
successor
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Example: remove(3)

➢Difficult case (N has 2 children):

○ Replace node N with its 
successor (with the next 
largest key)

○ To find successor - look for a 
min in its right subtree

○ Swap values in N and its 
successor
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Example: remove(3)

➢Difficult case (N has 2 children):

○ Replace node N with its 
successor (with the next 
largest key)

○ To find successor - look for a 
min in its right subtree

○ Swap values in N and its 
successor

○ Remove successor: this would 
be easy - why?
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Example: remove(3)

➢Difficult case (N has 2 children):

○ Replace node N with its 
successor (with the next 
largest key)

○ To find successor - look for a 
min in its right subtree

○ Swap values in N and its 
successor

○ Remove successor: this would 
be easy - why?
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The successor does not  have a left child!

(it was a min in the right subtree - which was the last possible left node)



Algorithm Remove(k, R)
if k < R.Key:

if R.left == Null:

ERROR: key k is not in the tree 

else if R.left.key == k:

removeLeftChild(R, R.left)

else:

Remove( k, R.left)

if k > R.Key:

if R.right == NullTree:

ERROR: key k is not in the tree 

else if R.right.key == k:

removeRightChild(R, R.right)

else:

Remove( k, R.right)



Algorithm removeRightChild (parent P, child C)
//at least one child of C is Null

//promote the other child in place of C

if C.left == Null:

Set P.left = C.right  //promote other child

else if C.right == Null:

Set P.left = C.left  //promote other child

//both children of C are real nodes

else: 

…

Fill in missing code:

A. left right right left

B. right left right right

C. right right right left

D. None of the above (something else)


