Binary Search Trees Update operations

Lecture 19
by Marina Barsky

BST: update operations

$>\boldsymbol{A d d}(k)$: creates a new node with key k and inserts it into the appropriate position of BST
> Remove (k): deletes the node with key k in such a way that the BST property of the tree is preserved

We already have all the helper algorithms to implement these

Algorithm Add

Input: Key k
Output: Updated BST containing a new node N with key k

```
Algorithm Search (k, R)
if R is Null or R.Key = k:
    return R
if R.Key > k:
    return Search(k, R.Left)
else if R.Key < k:
    return Search(k, R.Right)
```

We need to slightly modify Search

```
Algorithm Add ( \(k, R\) )
if \(R!=\) Null and \(R\).Key \(=k\) :
    ERROR: already in the tree
if k < R.Key:
    if \(R\).left == Null:
        \(R\).left = new Node(k)
    else:
    Add ( \(k, R\).left)
if k > R.Key:
    if \(R\).right == Null:
    \(R\).right = new Node(k)
    else:
            Add ( \(k\), R.right)
```


Example: add $(16, R)$

Where will be the new node N created after we call add $(6, R)$ on the root R of the following tree?

A. N will become the right child of 5
B. The left child of 7
C. The right child of 1
D. None of the above (somewhere else)

Solution: add (6, R)

Solution: add (6, R)

Algorithm Remove

Input: Key k
 Output: BST without node N with key k

The most challenging algorithm in this module

Remove node N with key k

\Rightarrow First, find N
>Easy case (both N's children are nulls)

- Replace N with a Null Node

Remove node N with key k

\Rightarrow First, find N
คEasy case (both N's children are nulls)

- Replace N with Null Node

Remove node N with key k

\rightarrow Medium case (N has one real child):
Just "splice out" node N

- Its unique real child assumes the position previously occupied by N-gets promoted to its place

Example: remove(1)

$>$ Medium case (N has one real child):
Just "splice out" node N

- Its unique real child assumes the position previously occupied by N-gets promoted to its place

Example: remove(1)

\rightarrow Medium case (N has one real child):
Just "splice out" node N

- Its unique real child assumes the position previously occupied by N-gets promoted to its place

Remove node N with key k

$>$ Difficult case (both N's children are real nodes):

Example: remove(3)

\curvearrowright Difficult case (both N's children are real nodes):

- Promote 1?

Example: remove(3)

$>$ Difficult case (both N's children are real nodes):

- Promote 1?

Example: remove(3)

$>$ Difficult case (both N's children are real nodes):

- Promote 5?

Example: remove(3)

\Rightarrow Difficult case (both N's children are real nodes):

- Promote 5?

Remove node N with key k : difficult

\Rightarrow Difficult case (N has 2 real children):
o We want to make as little changes to the tree structure as possible:

- Replace node N with its successor (with the next larger key)

Remove node N with key k : difficult

\Rightarrow Difficult case (N has 2 real children):

- Replace node N with its successor (with the next larger key)
- Luckily we know that N has the right child
o To find successor - look for a min in its right subtree

Example: remove(3)

\Rightarrow Difficult case (N has 2 children):

- Replace node N with its successor (with the next largest key)
o To find successor - look for a min in its right subtree

Example: remove(3)

$>$ Difficult case (N has 2 children):

- Replace node N with its successor (with the next largest key)
o To find successor - look for a min in its right subtree
- Swap data in N and its successor

Example: remove(3)

\Rightarrow Difficult case (N has 2 children):
o Replace node N with its successor (with the next largest key)
o To find successor - look for a min in its right subtree

- Swap values in N and its successor

Example: remove(3)

$>$ Difficult case (N has 2 children):
o Replace node N with its successor (with the next largest key)
o To find successor - look for a min in its right subtree

- Swap values in N and its successor
o Remove successor: this would be easy - why?

Example: remove(3)

\Rightarrow Difficult case (N has 2 children):

- Replace node N with its successor (with the next largest key)
o To find successor - look for a min in its right subtree
- Swap values in N and its successor
o Remove successor: this would be easy - why?
The successor does not have a left child!
(it was a \min in the right subtree - which was the last possible left node)

Algorithm Remove (k, R)

if k < R.Key:
if R.left == Null:
ERROR: key k is not in the tree
else if R.left.key $==\mathrm{k}$: removeLeftChild (R, R.left)
else:
Remove(k, R.left)
if k > R.Key:
if R.right == NullTree:
ERROR: key k is not in the tree
else if R.right.key == k:
removeRightChild (R, R.right)
else:
Remove (k, R.right)

Algorithm removeRightChild (parent P, child C)

//at least one child of C is Null

//promote the other child in place of C
if C.left == Null:
Set P. $=C$ / promote other child
else if C.right == Null:
Set P. $=C$. $/$ promote other child
//both children of C are real nodes else:

Fill in missing code:
A. left right right left
B. right left right right
C. right right right left
D. None of the above (something else)

