
Binary Search Trees

Update operations
Lecture 19

by Marina Barsky

BST: update operations

➢ Add (k): creates a new node with key k and inserts it into the

appropriate position of BST

➢ Remove (k): deletes the node with key k in such a way that

the BST property of the tree is preserved

We already have all the helper algorithms to implement these

Algorithm Add

Input: Key k

Output: Updated BST containing a new node N with key k

Algorithm Search (k, R)

if R is Null or R.Key = k:

return R

if R.Key > k :

return Search(k, R.Left)

else if R.Key < k :

return Search(k, R.Right)

We need to slightly modify Search

Algorithm Add (k, R)

if R != Null and R.Key = k:

ERROR: already in the tree

if k < R.Key:

if R .left == Null:

R .left = new Node(k)

else:

Add (k, R.left)

if k > R.Key :

if R .right == Null:

R .right = new Node(k)

else:

Add (k, R.right)

Example: add (16, R)

10

5

1 7

14

12

R

16 > R.key

Example: add (16, R)

10

5

1 7

14

12

R
16 > R.key

Example: add (16, R)

10

5

1 7

14

12

R

R’ right child is Null –
this is the place to
insert new node

16 > R.key

Example: add (16, R)

10

5

1 16

14

7 12

Where will be the new node N created after we
call add (6, R) on the root R of the following
tree?

10

5

1 16

14

7 12

A. N will become the right child

of 5

B. The left child of 7

C. The right child of 1

D. None of the above

(somewhere else)

R

Solution: add (6, R)

10

5

1 16

14
R

7 12

Solution: add (6, R)

10

5

1 16

14

7

6

12

Algorithm Remove

Input: Key k

Output: BST without node N with key k

The most challenging algorithm in this module

Remove node N with key k

➢First, find N

➢Easy case (both N’s children are
nulls)

○Replace N with a Null Node

3

1

2

5

4

Remove node N with key k

➢First, find N

➢Easy case (both N’s children are
nulls)

○Replace N with Null Node

3

1

2

5

Deleted

Remove node N with key k

➢Medium case (N has one real child):

Just “splice out” node N

○ Its unique real child assumes
the position previously
occupied by N – gets promoted
to its place

3

1

2

5

4

Example: remove(1)

3

1

2

5

4

➢Medium case (N has one real child):

Just “splice out” node N

○ Its unique real child assumes
the position previously
occupied by N – gets promoted
to its place

Example: remove(1)

3

2 5

4

1 is
deleted

➢Medium case (N has one real child):

Just “splice out” node N

○ Its unique real child assumes
the position previously
occupied by N – gets promoted
to its place

Remove node N with key k

➢Difficult case (both N’s children are
real nodes):3

1

2

5

4

Example: remove(3)

➢Difficult case (both N’s children are
real nodes):

○ Promote 1?

3

1

2

5

4

Example: remove(3)

1

2 5

4
Not a BST!

➢Difficult case (both N’s children are
real nodes):

○ Promote 1?

Example: remove(3)

➢Difficult case (both N’s children are
real nodes):

○ Promote 5?

3

1

2

5

4

Example: remove(3)

➢Difficult case (both N’s children are
real nodes):

○ Promote 5?

5

1

2

4

Not a BST!

Remove node N with key k: difficult
case

➢Difficult case (N has 2 real
children):

○ We want to make as little
changes to the tree structure
as possible:

○ Replace node N with its
successor (with the next larger
key)

3

1

2

5

4

Remove node N with key k: difficult
case

➢Difficult case (N has 2 real
children):

○ Replace node N with its
successor (with the next larger
key)

○ Luckily we know that N has
the right child

○ To find successor - look for a
min in its right subtree

3

1

2

5

4

Example: remove(3)

➢Difficult case (N has 2 children):

○ Replace node N with its
successor (with the next
largest key)

○ To find successor - look for a
min in its right subtree

3

1

2

5

4 successor of 3

Example: remove(3)

➢Difficult case (N has 2 children):

○ Replace node N with its
successor (with the next
largest key)

○ To find successor - look for a
min in its right subtree

○ Swap data in N and its
successor

3

1

2

5

4 successor of 3

Example: remove(3)

➢Difficult case (N has 2 children):

○ Replace node N with its
successor (with the next
largest key)

○ To find successor - look for a
min in its right subtree

○ Swap values in N and its
successor

4

1

2

5

3

Example: remove(3)

➢Difficult case (N has 2 children):

○ Replace node N with its
successor (with the next
largest key)

○ To find successor - look for a
min in its right subtree

○ Swap values in N and its
successor

○ Remove successor: this would
be easy - why?

4

1

2

5

3

Example: remove(3)

➢Difficult case (N has 2 children):

○ Replace node N with its
successor (with the next
largest key)

○ To find successor - look for a
min in its right subtree

○ Swap values in N and its
successor

○ Remove successor: this would
be easy - why?

4

1

2

5

3

The successor does not have a left child!

(it was a min in the right subtree - which was the last possible left node)

Algorithm Remove(k, R)
if k < R.Key:

if R.left == Null:

ERROR: key k is not in the tree

else if R.left.key == k:

removeLeftChild(R, R.left)

else:

Remove(k, R.left)

if k > R.Key:

if R.right == NullTree:

ERROR: key k is not in the tree

else if R.right.key == k:

removeRightChild(R, R.right)

else:

Remove(k, R.right)

Algorithm removeRightChild (parent P, child C)
//at least one child of C is Null

//promote the other child in place of C

if C.left == Null:

Set P.left = C.right //promote other child

else if C.right == Null:

Set P.left = C.left //promote other child

//both children of C are real nodes

else:

…

Fill in missing code:

A. left right right left

B. right left right right

C. right right right left

D. None of the above (something else)

