
Java Basics 2
Lecture 2

By Marina Barsky

1

2

Functions (static methods)
Variable scope
Reference type
Strings
Scanner

Extending primitive types

• We learned about default data
types in Java: what are they?

• We can always extend existing
data types by defining a new
type (class) of objects

public class Dog {

int size;

void bark() {

System.out.println("Ruff!");

}

}

public class DogTestDrive {

public static void main (String[] args) {

Dog d = new Dog();

d.size = 40;

d.bark();

}

}

instance variable
method

Declare a variable of type Dog

dot
operator

Set its size and
call its method

3

Static methods
• If the method is

declared as static, we
can use it without
creating an object

• Static methods are
associated with a given
class name, and can be
used similarly to
functions in other
languages

public class Floor {

public static int toEur (int aF) {

return aF + 1;

}

public static int toAm (int eF){

return eF – 1;

}

}

public class FloorTestDrive {

public static void main (String[] args) {

int eF = 5;

int aF = Floor.toAm(eF);

System.out.println(aF);

}

}
4

Each method is composed of:

• Signature – defines the name and parameters

• Body – defines what the method does

public class Floor {

public static int toEur (int aF) {

return aF + 1;

}

public static int toAm (int eF){

return eF – 1;

}

}

Signature: name params

body

5

Method Signature
[modifiers] returnType name ([params]) {

// Method body

}

• Composed of method name and params

• A signature must be unique in a given class

public class Floor {

public static int toEur (int aF) {

return aF + 1;

}

public static double toEur (double aF){

return aF + 1;

}

}

The program will
know which method
to call based on the
type of the
parameter

6

Return Type

• Defines the type of the returned value

• The value returned from the method can be assigned to a
variable of the same type

• If you do not need the method to return anything, declare it
as void

• If the return type is not void, the method must have a
return statement from any program path, and it must return
an object of the corresponding type

7

A. Yes

B. No

C. It depends on value of x

Is this a valid Java method?
String static test(int x) {

if (x == 2) {

return "hello";

} else {

return 2;

}

}

8

Which method will be called if I run
test(5.5)?

A. The first

B. The second

C. It depends

D. This will cause a compiler error

String test(int x) {

…

}

boolean test (double x){

…

}

9

Which method will be called if I run
test(5)?

A. The first

B. The second

C. It depends

D. This will cause a compiler error

String test(int x) {

…

}

boolean test (int x){

…

}

10

Variable scope:
instance (class) variables

• Instance variables declared at the class level are accessible
throughout the class, following the variable declaration

public class Dog {

int size;

void grow() {

size++;

}

void report() {

System.out.println("I am a dog of size "+size);

}

}

instance variable

11

Variable scope: local variables
• For local variables declared inside the method:

• The scope begins right after the variable is declared

• The scope ends with the first closing curly bracket following
the declaration

public class Dog {

int size;

void grow(int cm) {

int weight = 0;

size++;

weight++;

}

void report() {

System.out.println("I am a dog");

System.out.println("My size is "+ size);

System.out.println("My weight is "+weight);

}

}

local variable

This will not
compile:
weight
variable is
out of scope!

12

Method parameters: scope
• Method parameters are passed by copy in Java.

• That means that new variables of the corresponding type are created
and the value of a caller is copied into them

public class Dog {

int size;

void bark(int num) {

while (num > 0) {

System.out.println("Ruff!");

num--;

}

}

public static void main (String[] args) {

Dog d = new Dog();

int numBarks = 5;

d.bark(numBarks);

System.out.println(numBarks);

}

}

numBarks is copied into a
new variable num

Here the scope of num ends

numBarks is still 5

13

Iteration variables: scope

• Variables declared in the header of a for loop, are only
accessible inside the loop

public class Dog {

int size;

void bark(int num) {

for(int i=0; i< num; i++)

System.out.println("Ruff!");

System.out.println(i);

}

}

This will not compile:
variable i is out of
scope!

14

15

Initial values

• Uninitialized instance variables of primitive type are given
default values

int age; // Initialized to 0

double speed; // Initialized to 0.0

char grade; // Initialized to \u0000 (Unicode)

boolean loggedIn; // Initialized to false

• Uninitialized local variables declared in a method are not given
default values

• Rule of Thumb: Always initialize a local variable when you
declare it!

• Compiler will warn you if you don’t

Storing new types in a variable

• With a new class of Objects – we create a new data type

• How do we declare a variable of a new type – what is the size
of a cup?

• An object reference variable doesn’t hold the object itself, but
it holds something like a pointer (or an address)

• Except, in Java we don’t really know the value of this address

• And the JVM knows how to use the reference to get to the
actual object

16

Reference and value
• An object reference is just another variable value.

• Something that goes into the cup.

reference
int

Primitive variable:
int x=7;

The bits representing
7 go into the cup

Primitive
value

Reference variable:
Dog d=new Dog();

The bits representing a
way to get to the Dog
object go into the cup

Dog
object

17

Reference variables
Dog myDog;

• reference variable of type Dog

• does not reference any actual object yet

• has default value null

• cannot call any methods of Dog class

referenceshortintlong

Size of reference
variables is the
same for a given
operating system:
for example it is
long for 64-bit
system

18

When the object is created

Dog myDog;

myDog=new Dog();

myDog.bark(); Now we can call
the methods of
class Dog

19

Where the object is created

• There are several types of memory:

• Stack: very fast, limited amount

All primitives and reference variables are allocated on the
stack

• Heap: slower, flexible, large as the RAM

All Java objects live on the heap

Dog myDog;
Dog myDog=new Dog();

Object is created on the Heap

20

Assigning references I

Book b=new Book();

Book c=new Book();

Book

Book
object 1

b

References:

Objects:

Book

Book
object 2

c

2

2

21

Assigning references II

Book b=new Book();

Book c=new Book();

Book d=c;

Book

Book
object 1

b

References:

Objects:

Book

Book
object 2

c

Book

d

3

2

22

Assigning references III

Book b=new Book();

Book c=new Book();

Book d=c;

c=b;

References:

Objects:

Book
object 2

Book

d

Book

Book
object 1

b

Book

c

3

2

23

Assigning references IV

Book b=new Book();

Book c=new Book();

b=c;

Book
object 1

References:

Reachable Objects:

Abandoned objects:

Book

b

Book

Book
object 2

c

2

1

1

24

Assigning references V

Book b=new Book();

Book c=new Book();

b=c;

c=null;

Book

Book
object 1

b

Active References: 1
Null references: 1
Reachable Objects: 1
Abandoned objects: 1

Book

Book
object 2

c

25

Recycling abandoned objects

• Compiler manages all the memory used on the Stack during
compilation and can automatically clean it

• However, if you create an object on the Heap, the compiler
has no knowledge of its lifetime

• Java provides a feature called a garbage collector that
automatically discovers when an object is no longer in use
and destroys it

• The garbage collector provides a higher level of insurance
against the insidious problem of memory leaks

26

Manipulating References

• Change reference to refer to another object

p1 = p2;

• Compare references and see if they refer to the same object

(p1 == p2)

• Cannot perform mathematical operations

p1 + p2

• Access internal fields or call methods using the dot operator

String s = "Hello World!";

System.out.println(s.length);

27

Reference variables gotchas
• If two objects are exactly the same but are located in different memory

locations, comparing their references will yield false

(p1 == p2)

• You need to implement a special method .equals() to compare objects

themselves rather than their location addresses

(p1.equals(p2))

• Assigning references only copies a memory location and does not copy

the object

p1 = p2;

• You would need to implement the .clone() method to copy content of an

object

p1 = p2.clone();
28

What is printed?

Dog a=new Dog();

Dog b=new Dog();

Dog c=a;

System.out.println(a==b);

System.out.println(a==c);

System.out.println(b==c);

29

• A
true

true

true

• B
false

true

false

• C
false

false

false

• D
true

true

false

• E
None of

the above

Reference variables as
method parameters
• Parameters are still passed by copy: only this time we copy the memory

location!

• Thus inside the method we can manipulate the same object through a
copy of the reference

public class Dog {

int size;

}

public class Dogs {

static void grow(Dog d){

d.size ++;

}

public static void main (String[] args){

Dog myDog = new Dog();

myDog.size = 5;

grow(myDog);

System.out.println(myDog.size);

}

}

Copied myDog reference
into a variable d

Manipulating the same object
through a different reference

myDog has size 6

30

The String Class
• String is not a primitive type in Java, it is a reference type

• However, Java provides language-level support for Strings literals

s = "Bob was here!", t="-11.3", a=""

• A single character can be accessed using charAt()

As with arrays, indexing starts at position 0

String s = "computer";

char c = s.charAt(5); // c gets value 't'

c = "oops".charAt(4); // run-time error!

• String provides a length method

int len = s.length(); // len gets value 8

len = "".length(); // len gets value 0

• String is immutable and the sequence of characters is read-only

31

You do not have to
use new with String

String is a reference type,
not a primitive

32

String A = "abracadabra";

String B = A;

String C = "abracadabra";

String D = new String("abracadabra");

a b r a c a d a b r aA

B

C

D a b r a c a d a b r a

0 1 2 3 4 5 6 7 8 9 10

Substring Method

33

String A = "abracadabra";

String B = A.substring(4,8);

String C = A.substring(6,7);

String D = A.substring(0,4) + A.substring(7);

a b r a c a d a b r aA

B

C

D a b r a a b r a

c a d a

d

0 1 2 3 4 5 6 7 8 9 10

IndexOf Method

34

String A = "abracadabra";

int loc = A.indexOf("ra");

// loc = 2

loc = A.indexOf("ra",5);

// loc = 9

loc = A.indexOf("ra", A.indexOf("ra")+1);

// loc = 9

a b r a c a d a b r aA

0 1 2 3 4 5 6 7 8 9 10

String methods in Java
• Useful methods (also check String javadoc page)

• indexOf(string) : int

• indexOf(string, startIndex) : int

• substring(fromPos, toPos) : String

• substring(fromPos) : String

• charAt(int index) : char

• equals(other) : bool Always use this!

• toLowerCase() : String

• toUpperCase() : String

• compareTo(string) : int

• length() : int

• startsWith(string) : boolean

• Understand special cases!
35

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html

Example: Delete substring

36

Strings are immutable
• No portion of a String can be altered
• To modify a String, copy portions of it

public class Slice{

// method to remove first occurrence of sub from string s
public static String delete(String s, String sub) {

int upTo = s.indexOf(sub); // End of left part of s
if(upTo == -1) return s; // s doesn't contain sub

int thenFrom = upTo + sub.length(); // Start of right part
return s.substring(0,upTo) + s.substring(thenFrom);

}
}

Scanner Class

• We use Scanner class to get input from the console, from
a String or from a file

• The Scanner class must be imported

import java.util.Scanner

• System class provides an object called in that allows low-
level input:

in is of type InputStream

• Scanner class provides higher-level input reading from an
InputStream

Scanner s = new Scanner(System.in);

37

Consuming input with Scanner

• Intuition: Scanner provides methods to "consume" the
data in an InputStream

• Scanner methods include

• hasNext() → boolean : Is there more input
remaining?

• nextLine() → String : Consumes and returns the
unread contents of current line

• next() → String : Consumes and returns next
"token" (String surrounded by white space)

• nextInt() → int : Consumes and returns (as an int)
next token, if token represents an int value

• also nextDouble(), nextFloat(), nextChar(), …
38

39

Example: Scanner
import java.util.Scanner;

public class Sum5 {

public static void main(String[] args) {

// create a scanner for the terminal input
Scanner in = new Scanner(System.in);

int total = 0; // running sum

System.out.print("Give me a number (any non-int to end): ");
while (in.hasNextInt()){

int n = in.nextInt();
total += n;

}

System.out.println("The total is " + total);
}

}

Reference variables: summary

• Variables must have name and type

• There are 2 flavors of variables: primitive and reference

• Primitive variable stores the actual value: 5, ‘a’, 3.1415

• Reference variable stores an address of an object on the heap

• Through reference variable we can get to an object using dot

operator

• Reference variable has value null when not referencing any actual

object

• Objects that lost connection to the reference variable are

disposed by Garbage Collector

40

To do list

❑Go over slides, ask for clarifications if needed (Piazza,
emails to OWLs or instructors)

❑Read the demo code

❑Watch the second set of episodes “Python vs. Java”. Pay
attention to creating new objects

❑Read chapter 8 of “Java for Python programmers”

❑Finish Home quiz 2

❑LAB 0: due Sunday Sept 18, 10 pm

41

