
Lab 6. Binary trees
Recursion with objects and polymorphism

abstract class BinaryTree<T>

public class ConsTree<T>public class EmptyTree<T>

public class ConsTree<T> extends BinaryTree<T> {

public ConsTree(T data, BinaryTree<T> left, BinaryTree<T> right) {
this.data = data;
this.leftChild = left;
this.rightChild = right;

}

public ConsTree(T data) {
this(data, new EmptyTree<T>(), new EmptyTree<T>());

}

Default
constructor:
two children
initially set to
EmptyTree

Example: recursive height()

public class ConsTree<T> extends BinaryTree<T> {

@Override
public int height() {

return Math.max(this.leftChild.height(),
this.rightChild.height()) + 1;

}
}

public abstract class BinaryTree<T> {
public abstract int height();

}

Superclass: declares method height

Non-empty tree
implements one
recursive step

public class EmptyTree<T> extends BinaryTree<T> {

@Override
public int height() {
return -1;

}

Empty tree
implements base
case

Algorithm height (tree)

if tree is EmptyTree:

return -1

return 1 + Max(height(tree.left),

height(tree.right))

Corresponding recursive algorithm

implemented above:

Note how inheritance and polymorphism made our code more

expressive – child trees are either Real trees or Empty trees, but both

are defined as their superclass BinaryTree

No need to ask about the base case: when we reach an empty tree

node, it automatically performs the base-case operation

Set and Map ADT
Hash tables

Lecture 21

by Marina Barsky

Set

• A set is simply a collection of unique things: the most
significant characteristic of any set is that it does not contain
duplicates

• We can put anything we like into a set. However, in Java we
group together things of the same class (type): we could
have a set of Vehicles or a set of Animals, but not both [as
with any other collection)

Abstract Data Type: Set

Specification
Set is an Abstract Data Type which stores a collection of
unique elements* and supports the following operations:

→Contains (k) - returns True if element k is in the
collection. Returns False otherwise.

→Add (k) - adds element k to the collection

→Remove (k) - removes element k from the collection

*The order of elements in the collection is not important

Sets are optimized for
set operations:
Set A={1, 2, 3, 4} Set B={4, 3, 1, 6}

→Intersection (set A, set B): creates a new set C consisting
only of elements that are found both in A and in B:

A ∩ B = {1, 3, 4}

→Union (set A, set B): combines all elements of A and B into a
single set C (removes duplicates):

A U B = {1, 2, 3, 4, 6}

→Difference (set A, set B): creates a new set C that contains
all the elements that are in A but not in B:

A – B = {2}

Set Operations in Java: DEMO

https://github.com/mgbarsky/cs151_data_structure_demos/tree/main/6.sets/sets

Which data structure to use to
implement Set ADT?

Main goal: locate the element fast
➢ List, Array - N elements are unsorted – search requires

O(N) time

➢ Sorted array - N elements are sorted – O(log N) binary
search
○ Can keep sorted elements in Balanced BST for quick

update operations

It doesn’t seem like we can do much better

Searching in time O(1)

➢ How about O(1), that is, constant-time search?

➢ We can do it if we store data in an array organized in a
particular way

Hashing

“Hash is a food, especially meat and
potatoes, chopped and mixed together; a
confused mess “ (en.wiktionary.org/wiki/hash)

The idea of

http://www.google.ca/url?&ei=l_1HSpPWEYjcNsLtzK0G&sig2=SaEw8o_3VinYN6bnrkexeg&q=http://en.wiktionary.org/wiki/hash&ei=l_1HSpPWEYjcNsLtzK0G&sa=X&oi=define&ct=&cd=1&usg=AFQjCNF4gcSHUN-aeQxMCEDGYLMgEHykDg

➢ The obvious O(N2) solution:

for each character in order:

check whether that character is repeated

Problem 1: First repeating character

Input: String S of length N
Output: first repeating character (if any) in S

The number of all possible characters is 256 (ASCII characters)

➢ We create an array H of size 256 and initialize it with all
zeros

➢ For each input character c go to the corresponding slot
H[c] and set count at this position to 1

➢ Since we are using arrays, it takes constant time for
reaching any location

➢ Once we find a character for which counter is already 1 -
we know that this is the one which is repeating for the
first time

a 97

b 98

c 99

d 100

e 101

f 102

g 103

h 104

i 105

j 106

k 107

l 108

m 109

n 110

o 111

Problem 1: First repeating character

Input: String S of length N
Output: first repeating character (if any) in S

➢ Because the total number of all possible keys is
small (256), we were able to map each key
(character) to a single memory location

➢ The key tells us precisely where to look in the
array!

This method of storing keys in the array is
called direct addressing: store key k in
position k of the array

a 97 1

b 98 1

c 99 1

d 100

e 101

f 102

g 103

h 104

i 105

j 106

k 107

l 108

m 109

n 110

o 111

cabare Run-time O(N)

Problem 1: First repeating character

Input: String S of length N
Output: first repeating character (if any) in S

➢ This very similarly looking problem cannot be solved with
direct addressing

➢ The total number of all possible integers is 2,147,483,647.
This is the universe of all possible keys - thus the size of
the array

➢ What if we have only 25 integers to store? Impractical

➢ Impossible: if array elements are floats/strings/objects

➢ For these cases we use a technique of hashing: we
convert each element into a number using hash function

Problem 2: First repeating number

Input: Array A containing N integers
Output: first repeating number (if any) in A

Intuition: hashing inputs

➢ Suppose we were to come up with a “magic function”
that, given a key to search for, would tell us the exact
location in the array such that
○ If key is in that location, it’s in the array
○ If key is not in that location, it’s not in the array

➢ This function would have no other purpose

➢ If we look at the function’s inputs and outputs, the
connection between them won’t “make any sense”

➢ This function is called a hash function because it “makes
hash” of its inputs

Assume the hash function h(x) = x%6.
What bucket (position in the array)
will 27 hash to?

A. 2

B. 3

C. 15

D. None of the above

[24, 37, __, __, __, 11]

Assume the hash function h(x) = x%6.
What bucket (position in the array)
will 39 hash to?

A. 2

B. 3

C. 4

D. None of the above

[24, 37, __, __, __, 11]

Case study: hashing students

➢ Suppose we want to store
student objects in the array

➢ For each student we apply
the following hash function:

hashCode(Student) =

length (Student.lastName)

This gives us the following
values:

• hashCode(‘Chan’)=4

• hashCode(‘Yam’)=3

• hashCode(‘Li’)=2

• hashCode(‘Jones’)=5

• hashCode(‘Taylor’)=6

Array of students: hash table

0

1

2 Li

3 Yam

4 Chan

5 Jones

6 Taylor

7

➢ We place the students into
array slots which correspond
to the computed hash
values:

○ hashCode(‘Chan’)=4

○ hashCode(‘Yam’)=3

○ hashCode(‘Li’)=2

○ hashCode(‘Jones’)=5

○ hashCode(‘Taylor’)=6

Good hash function:
length of the last name

0

1

2 Li

3 Yam

4 Chan

5 Jones

6 Taylor

7

➢Our hash function is easy to compute

➢An array needs to be of size 18 only, since
the longest English surname,
Featherstonehaugh (Guinness, 1996), is only
17 characters long

➢We waste a little bit of space with entries
0,1 of the array, which do not seem to be
ever occupied. But the waste is not bad
either

Bad hash function:
length of the last name

0

1

2 Li

3 Yam

4 Chan

5 Jones

6 Taylor

7

➢ Suppose we have a new student: Smith

○hashValue(‘Smith’)=5

➢When several values are hashed to the
same slot in the array, this is called a
collision

➢Now what?

Looking for a good hash function:
day of birth
➢What about the day of birth?

○ We know that this would be only 365 (366) possible
values

○ The birth day of each student is randomly distributed
across this range, and this hash function is easy to
compute

Birthday paradox

➢For a college with only n=24 students, the probability that
any 2 of theme were born on the same day is > 0.5

➢Let’s approximate this probability:

○ The probability of any two people not having the same birthday is:

p =364/365

○ The number of possible student pairs is () = n(n-1)/2 = 276

○ The probability for n students of not having birthday on the same
date is pn(n-1)/2. For 24 students this gives: (364/365)276≈0.47.

○ Then the probability of finding a pair of students colliding on their
birthday is 1.00 - 0.47 = 0.53!

➢This is called a birthday paradox

n
2

https://en.wikipedia.org/wiki/Birthday_problem

http://commons.wikimedia.org/wiki/File:Birthday_Paradox.svg

http://commons.wikimedia.org/wiki/File:Birthday_Paradox.svg

In search for a
perfect hash function

A perfect hash function is a function that:
1. When applied to an Object, returns a number

2. When applied to equal Objects, returns the same number for
each

3. When applied to unequal Objects returns different numbers
for each, preventing collisions.

4. The numbers returned by hash function are evenly distributed
between the range of the positions in the array

5. We also require for our hash function to be efficiently
computable

non-random inputs → random numbers?

➢How to come up with this perfect hashing function?

➢In general – there is no such magic function 😞
○ In a few specific cases, where all the possible values are known in

advance, it is possible to define a perfect hash function. For
example hashing objects by their SSN numbers. But this will require
an array to be of size 109

➢It seems that collisions are essentially unavoidable

➢What is the next best thing?
○ A perfect hash function would have told us exactly where to

look
○ However, the best we can do is a function that tells us in

what area of an array to start looking!

In search for a
perfect hash function

Which of the following hash functions for Strings are
legal?

A. All of the above

B. I, II

C. II, III

D. I, III

E. None of the above

I. Return a random number.
II. Return 0 if the string is of even length, 1 if it's of odd

length.
III. Add together all the ASCII values of the characters.

Hashing strings by summing up
their character values
➢It seems like a good idea to map each student

surname into a number by adding up the ranks (or
ASCII codes) of letters in this surname.

hashCode (S) =

What a great hash function!

a 1

b 2

c 3

d 4

e 5

f 6

g 7

h 8

i 9

j 10

k 11

l 12

m 13

n 14

o 15

p 16

r 17

s 18

t 19

u 20

v 21

w 22

x 23

y 24

z 25

◆ hashCode(‘Chan’)=3+8+1+14=26

◆ hashCode(‘Yam’)=24+1+13=38

◆ hashCode(‘Li’)=12+9=21

◆ hashCode(‘Jones’)=10+15+14+5+18=62

◆ hashCode(‘Taylor’)=19+1+24+12+15+17=88

◆ hashCode(‘Smith’)=18+13+9+19+8=67

hashCode (S) =

Still a lot of collisions!

a 1

b 2

c 3

d 4

e 5

f 6

g 7

h 8

i 9

j 10

k 11

l 12

m 13

n 14

o 15

p 16

r 17

s 18

t 19

u 20

v 21

w 22

x 23

y 24

z 25

➔ Not only hashCode(‘Yam’)=hashCode(‘May’)

➔ But hashCode(‘Chan’)= hashCode(‘Lam’) !

The function takes into account the value of
each character in the string, but not the order
of characters

hashCode (S) =

➢The summation is not a good choice for sequences of
elements where the order has meaning

➢Alternative: choose A≠1, and use a hash function for string S
of length N:

➢This is a polynomial of degree N for A, and the elements
(characters) of the String are the coefficients of this
polynomial

Polynomial hashing scheme

Example: polynomial hashing

S1 = ‘Yam’

S2 = ‘May’

A = 31

hashCode(S1) = 24*312 + 1*311 + 13*310 = 23108

hashCode(S2) = 13*312 + 1*311 + 24*310 = 12548

a 1

b 2

c 3

d 4

e 5

f 6

g 7

h 8

i 9

j 10

k 11

l 12

m 13

n 14

o 15

p 16

r 17

s 18

t 19

u 20

v 21

w 22

x 23

y 24

z 25

➢Instead of using the summation of all character values, the
polynomial hash function introduces interactions between
different bits of successive characters that will provoke or
spread randomness of the result

How to compute polynomial of
degree N in time O(N)
Horner’s method:

public int hashCode(){

int hash=0;

for (int i=0; i< length(); i++)

hash=hash*31+S[i];

return hash;

}

Let x=31, a0 … an represent n+1 characters of string S:

That is ~how
hashCode() is
implemented inside
Java String class

https://en.wikipedia.org/wiki/Horner%27s_method

Java String hashCode()

➢Polynomial hashing is quite a good hash function: for
different strings it returns mostly different values which are
well spread over the range of all possible integers

➢This hash function is also very efficient, since we need only
n = length() steps to compute it

Reducing the range of hashCode
to the capacity of the array

➢The output of hash function is a number randomly distributed
over the range of all integers.

○ But we need to store our objects in the array of size M

➢Step 2: compression mapping

○ Converting integers in range ~ [0,400000000] to integers in
range [0, M]

○ The simplest way to do it: |hashCode| MOD M

○ In practice, the MAD (Multiply Add and Divide) method:

|(A*hashCode+B) MOD M|

The best results when A, B and M are primes

Full hashing

Hashing Students to 7 slots

0

1 Roy

2 Yam

3 Lam

4 Li

5 Lee

6 Taylor

➔ Applying the polynomial
hash function:

hashCode(‘Taylor’)=-880692189

hashCode(‘Yam’)=119397

hashCode(‘Li’)=345

hashCode(‘Lee’)=107020

hashCode(‘Lam’)=106904

hashCode(‘Roy’)=113116

➔ Applying the
|(11*hashCode+13) MOD 7|
compression mapping:

arrayIndex(‘Taylor’)=6

arrayIndex(‘Yam’)=2

arrayIndex(‘Li’)=4

arrayIndex(‘Lee’)=5

arrayIndex(‘Lam’)=3

arrayIndex(‘Roy’)=1

No more collisions?

• Does a good hash always
produce different hash code
for different strings?

The answer is NO.
If you run the code in the
box, you will find out that
• The words Aa and BB have

the same hashCode
• Words variants and gelato

hash to the same value
• …

• We have to be prepared to
deal with collisions, since they
are unavoidable

public static void main(String [] args) {

String [] words=new String[6];
words[0]="Aa";
words[1]="BB";
words[2]="variants";
words[3]="gelato";
words[4]="misused";
words[5]="horsemints";

for(int i=0;i<6;i++) {
System.out.print("Hash code of "+words[i]+": ");
System.out.println(words[i].hashCode());

}
}

Collision resolution strategies

➢Open addressing:

○Linear probing

○Quadratic probing

○Double hashing

➢Separate chaining

Linear probing

➢What can we do when two different values attempt to
occupy the same slot in the array?

○ Search from there for an empty location

■ Can stop searching when we find the value or an empty
location

■ Search must be end-around (circular array)

Add with linear probing

• Suppose you want to add seagull to this
hash table

• Also suppose:
• hashCode(‘seagull’) = 143
• table[143] is not empty
• table[143] != seagull
• table[144] is not empty
• table[144] != seagull
• table[145] is empty

• Therefore, put seagull at location 145

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

Find with linear probing: seagull

• Suppose you want to look up seagull in
this hash table

• Also suppose:
• hashCode(seagull) = 143

• table[143] is not empty

• table[143] != seagull

• table[144] is not empty

• table[144] != seagull

• table[145] is not empty

• table[145] == seagull !

• We found seagull at location 145

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

Find with linear probing: cow

• Suppose you want to look up cow in this
hash table

• Also suppose:
• hashCode(cow) = 144

• table[144] is not empty
• table[144] != cow

• table[145] is not empty
• table[145] != cow

• table[146] is empty

• If cow were in the table, we should have
found it by now

• Therefore, it isn’t here

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

Add with linear probing

• Suppose you want to add hawk to this
hash table

• Also suppose

• hashCode(hawk) = 143

• table[143] is not empty

• table[143] != hawk

• table[144] is not empty

• table[144] == hawk

• hawk is already in the table, so do
nothing

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

Add with linear probing

• Suppose you want to add cardinal to
this hash table

• Also suppose:

• hashCode(cardinal) = 147

• The last location is 148

• 147 and 148 are occupied

• Solution:

• Treat the table as circular; after
148 comes 0

• Hence, cardinal goes in location 0
(or 1, or 2, or ...)

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

General problem with
open addressing: deletion

➢What happens if we delete
sparrow?
○hashCode(sparrow)=143

○hashCode(seagull)=143

robin

sparrow

hawk

bluejay

owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull

General problem with
open addressing: deletion

➢What happens if we delete
sparrow?
○hashCode(sparrow)=143

○hashCode(seagull)=143

robin

hawk

bluejay

owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull

General problem with
open addressing: deletion

➢What happens if we delete
sparrow?
○hashCode(sparrow)=143

○hashCode(seagull)=143

➢Now when searching for seagull
we check
○ table[143] is empty

○ We can not find seagull!

robin

hawk

bluejay

owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull

Solution to the deletion problem

➢After we delete sparrow we put a
special sign deleted instead of empty
○ hashCode(sparrow)=143
○ hashCode(seagull)=143

➢Now when searching for seagull we
check
○ table[143] is deleted
○ We skip it
○ table[144] is not empty
○ table[144] !=seagull
○ table[145]=seagull

We found seagull!

➢The deleted slots are filling up during
the subsequent insertions

robin

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

*Deleted

Group Work

• Add the following keys, in order, to an initially
empty Hash table of size N=13. The hash function
is hash(x) = x % 13

10, 85, 15, 70, 20, 60, 30, 50, 65, 40, 90, 35

• Resolve collisions with linear probing

Another problem with linear
probing: clustering

➢One problem with the above technique is the tendency to
form “clusters”

➢A cluster is a consecutive area in the array not containing any
open slots

➢The bigger a cluster gets, the more likely it is that new values
will hash into the cluster, and make it even bigger

➢Clusters cause degradation in the efficiency of search

➢Here is a non-solution: instead of stepping one ahead, step k
locations ahead

○ The clusters are still there, they’re just harder to see

○ Unless k and the table size are mutually prime, some
table locations are never even checked

Solution 1 to clustering problem:
Quadratic probing

➢As before, we first try slot j=hashCode MOD M.

➢If this slot is occupied, instead of trying slot j=|(j+1) MOD M|,
try slot:

j=|(hashCode+i2) MOD M|, where i takes values with increment of 1 and
we continue until j points to an empty slot

➢For example if position hashCode is initially 5, and M=7 we try:

j = 5 MOD 7 = 5

j =(5 + 12) MOD 7 = 6 MOD 7 = 6

j =(5 + 22) MOD 7 = 9 MOD 7 = 2

j =(5 + 32) MOD 7 = 14 MOD 7 = 0 etc.

Under quadratic probing, with the
following array, where will an item that
hashes to position 3 get placed?

A. 0

B. 2

C. 5

D. 9

E. None of the above

Index Value

0

1

2

3 X

4 X

5

6

7 X

8

9

j=|(hashCode+i2) MOD M|, hashCode = 3, M=10

Problems with Solution 1:
Quadratic probing

➢Quadratic probing helps to avoid the clustering problem of a
linear probing

➢But it creates its own kind of clustering, where the filled array
slots “bounce” in the array in a fixed pattern

➢In practice, even if M is a prime, this strategy may fail to find
an empty slot in the array that is just half full!

Solution 2 to clustering problem:
Double hashing
➢In this case we choose the secondary hash function:

stepHash(k).

➢If the slot j=hashCode MOD M is occupied, we iteratively
try the slots

j = |(hashCode+i*stepHash) MOD M|

➢The secondary hash function stepHash is not allowed to
return 0

➢The common choice (Q is a prime):

stepHash(S)=Q-(hashCode(S) mod Q)

Collision resolution strategies

➢Open addressing:
○ Linear probing

○Quadratic probing

○Double hashing

⮚Separate chaining

Separate chaining

➢The previous solutions
use open addressing: all
entries go into a “flat”
(unstructured) array

➢Another solution is to
store in each location the
head of a linked list of
values that hash to that
location

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

Separate chaining: Find

➢The Hash table becomes an array of M
linked lists

➢To find an Object with hashCode i

○ Retrieve List head pointer from
table[i]

○ Scan the chain of links

➢Running time depends on the length of
the chain

robin

sparrow

hawk

bluejay

owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull parrot

“If we are adding a new key to the hash table and the
position at hashCode is already occupied by a different
key, we can place the new key in the next available
empty slot in the underlying array.”

This collision resolution technique is of type:

A. Open addressing

B. Direct addressing

C. Separate chaining

D. Linear probing

E. More than one is correct

Separate Chaining
vs. Open Addressing

➢If the space is not an issue, separate chaining is the
method of choice: it will create new list elements until the
entire memory permits

➢If you want to be sure that you occupy exactly M array
slots, use open addressing, and use the probing strategy
which minimizes the clustering

ADT Set operations: performance

Search
(Contains)

Add Remove Search
(Contains)

Add Remove

log N log N log N log N log N log N

N 1** N N/2 N N/2

N N N 1* 1* 1*

N N N 1* 1* 1*

Implementation

Balanced Binary
tree

Unsorted List (Array
or Linked list)

Hash table with
linear probing

Hash table with
separate chaining

Worst case Expected

*Given a good hash function**If we know that new key is unique

Final notes about Hash table
performance

➢Hash tables are actually surprisingly efficient

➢Until the array is about 70% full, the number of probes
(places looked at in the table) is typically only 2 or 3

➢Sophisticated mathematical analysis is required to prove
that the expected cost of inserting or looking something up
in the hash table, is O(1)

➢Even when the table is nearly full (leading to occasional long
searches), overall efficiency is usually still quite high

Common implementations
of Set ADT using Hash Tables

➢ Set:

○ unordered_set in C++

○ HashSet in Java

○ set in Python

Now you know that in Python:

list (array)

t = [1,2,3,4, …, n]

if 8 in t:

print('found')

set

s = {1, 2, 3 … n}

if 8 in s:

print('found')

Time O(n) Time O(1)

Which tasks can be efficiently solved
using the Hash Table implementation
of Set ADT?

A. Removing duplicates from the array of integers

B. Quickly checking if student name is in the class roster

C. Testing if all the elements of a given array are unique

D. Given a list of family names and a given family name s,
counting how many times s appears in the array.

We use an unsorted Array List to
implement Set ADT.
Choose the row with the correct runtime
for each operation

Remove(k) Add(k) Find(k)

A O(1) O(n) O(1)

B O(log n) O(log n) O(log n)

C O(log n) O(n) O(log n)

D O(n) O(1) O(n)

E. None of the above

We use Balanced Binary Search Tree to
implement Set ADT.
Choose the row with the correct runtime
for each operation

Remove(k) Add(k) Find(k)

A O(1) O(n) O(1)

B O(log n) O(log n) O(log n)

C O(log n) O(n) O(log n)

D O(n) O(1) O(n)

E. None of the above

We use a Hash Table to implement Set
ADT.
Choose the row with the correct runtime
for each operation

Remove(k) Add(k) Find(k)

A O(1) O(n) O(1)

B O(log n) O(log n) O(log n)

C O(log n) O(n) O(log n)

D O(n) O(1) O(n)

E. None of the above

Sets and Maps

➢Sometimes we just want a set
of things—objects are either in
it, or they are not in it

0

1

2 Li

3 Yam

4 Chan

5 Jones

6 Taylor

7

SET

Sets and Maps

➢Sometimes we want a map—a
way of looking up one thing
based on the value of another

○ We use a key to find a place
in the map

○ The associated value is the
information we are trying
to look up

Key Value

0

1

2 Li Li info

3 Yam Yam info

4 Chan Chan info

5 Jones Jones info

6 Taylor Taylor info

7

MAP = ASSOCIATIVE ARRAY, DICTIONARY

What is a key and what is a value?

Key Phone number

Li 11111

Yam 22111

Chan 33111

Jones 11444

Taylor 55111

Key Last Name

11111 Li

22111 Yam

33111 Chan

11444 Jones

55111 Taylor

The answer: depends on the application

Abstract Data Type: Map

Specification
Map is an Abstract Data Type which supports the
following operations:

➔ Set (k, e) - adds element e to the collection and
associates it with key k

➔ Get (k) - returns the element associated with key k

➔ Contains (k) - returns True if there is an element
associated with the key k. Returns False otherwise

➔ Remove (k) - removes element with key k from the
collection

● The main efficiency of both Set and Map comes from the
ability to find the item quickly

Common implementations
of Set and Map ADT

➢ Set:

○ unordered_set in C++

○ HashSet in Java

○ set in Python

➢ Map:

○ unordered_map in C++

○ HashMap in Java

○ dict in Python

