
Lab 6. Binary trees
Recursion with objects and polymorphism

abstract class BinaryTree<T>

public class ConsTree<T>public class EmptyTree<T> 

public class ConsTree<T> extends BinaryTree<T> {

public ConsTree(T data, BinaryTree<T> left, BinaryTree<T> right) {
this.data = data;
this.leftChild = left;
this.rightChild = right;

}

public ConsTree(T data) {
this(data, new EmptyTree<T>(), new EmptyTree<T>());

}

Default 
constructor: 
two children 
initially set to 
EmptyTree



Example: recursive height()

public class ConsTree<T> extends BinaryTree<T> {

@Override
public int height() {

return Math.max(this.leftChild.height(), 
this.rightChild.height()) + 1;

}
}

public abstract class BinaryTree<T> {
public abstract int height(); 

}

Superclass: declares method height

Non-empty tree 
implements one 
recursive step

public class EmptyTree<T> extends BinaryTree<T> {

@Override
public int height() {
return -1;

}

Empty tree 
implements base 
case



Algorithm height (tree)

if tree is EmptyTree:

return -1

return 1 + Max(height(tree.left),

height(tree.right))

Corresponding recursive algorithm 

implemented above:

Note how inheritance and polymorphism made our code more 

expressive – child trees are either Real trees or Empty trees, but both 

are defined as their superclass BinaryTree

No need to ask about the base case: when we reach an empty tree 

node, it automatically performs the base-case operation



Set and Map ADT
Hash tables

Lecture 21

by Marina Barsky



Set

• A set is simply a collection of unique things: the most 
significant characteristic of any set is that it does not contain 
duplicates

• We can put anything we like into a set. However, in Java we 
group together things of the same class (type): we could 
have a set of Vehicles or a set of Animals, but not both [as 
with any other collection)



Abstract Data Type: Set

Specification
Set is an Abstract Data Type which stores a collection of 
unique elements* and supports the following operations:

→Contains (k) - returns True if element k is in the 
collection. Returns False otherwise.

→Add (k) - adds element k to the collection

→Remove (k) - removes element k from the collection

*The order of elements in the collection is not important



Sets are optimized for 
set operations:
Set A={1, 2, 3, 4} Set B={4, 3, 1, 6}

→Intersection (set A, set B): creates a new set C consisting 
only of elements that are found both in A and in B: 

A ∩ B = {1, 3, 4}

→Union (set A, set B): combines all elements of A and B into a 
single set C (removes duplicates): 

A U B = {1, 2, 3, 4, 6}

→Difference (set A, set B): creates a new set C that contains 
all the elements that are in A but not in B:

A – B = {2}

Set Operations in Java: DEMO

https://github.com/mgbarsky/cs151_data_structure_demos/tree/main/6.sets/sets


Which data structure to use to 
implement Set ADT?

Main goal: locate the element fast
➢ List, Array - N elements are unsorted – search requires 

O(N) time

➢ Sorted array - N elements are sorted – O(log N) binary 
search
○ Can keep sorted elements in Balanced BST for quick 

update operations

It doesn’t seem like we can do much better



Searching in time O(1)

➢ How about O(1), that is, constant-time search?

➢ We can do it if we store data in an array organized in a 
particular way



Hashing

“Hash is a food, especially meat and 
potatoes, chopped and mixed together; a 
confused mess “ (en.wiktionary.org/wiki/hash )

The idea of

http://www.google.ca/url?&ei=l_1HSpPWEYjcNsLtzK0G&sig2=SaEw8o_3VinYN6bnrkexeg&q=http://en.wiktionary.org/wiki/hash&ei=l_1HSpPWEYjcNsLtzK0G&sa=X&oi=define&ct=&cd=1&usg=AFQjCNF4gcSHUN-aeQxMCEDGYLMgEHykDg


➢ The obvious O(N2) solution: 

for each character in order:

check whether that character is repeated

Problem 1: First repeating character

Input: String S of length N
Output: first repeating character (if any) in S



The number of all possible characters is 256 (ASCII characters) 

➢ We create an array H of size 256 and initialize it with all 
zeros 

➢ For each input character c go to the corresponding slot 
H[c] and set count at this position to 1 

➢ Since we are using arrays, it takes constant time for 
reaching any location

➢ Once we find a character for which counter is already 1 -
we know that this is the one which is repeating for the 
first time

a 97

b 98

c 99

d 100

e 101

f 102

g 103

h 104

i 105

j 106

k 107

l 108

m 109

n 110

o 111

Problem 1: First repeating character

Input: String S of length N
Output: first repeating character (if any) in S



➢ Because the total number of all possible keys is 
small (256), we were able to map each key 
(character) to a single memory location

➢ The key tells us precisely where to look in the 
array!

This method of storing keys in the array is 
called direct addressing: store key k in 
position k of the array

a 97 1

b 98 1

c 99 1

d 100

e 101

f 102

g 103

h 104

i 105

j 106

k 107

l 108

m 109

n 110

o 111

cabare Run-time O(N)

Problem 1: First repeating character

Input: String S of length N
Output: first repeating character (if any) in S



➢ This very similarly looking problem cannot be solved with 
direct addressing

➢ The total number of all possible integers is 2,147,483,647. 
This is the universe of all possible keys - thus the size of 
the array

➢ What if we have only 25 integers to store? Impractical

➢ Impossible: if array elements are floats/strings/objects 

➢ For these cases we use a technique of hashing: we 
convert each element into a number using hash function

Problem 2: First repeating number

Input: Array A containing N integers
Output: first repeating number (if any) in A



Intuition: hashing inputs

➢ Suppose we were to come up with a “magic function” 
that, given a key to search for, would tell us the exact 
location in the array such that
○ If key is in that location, it’s in the array
○ If key is not in that location, it’s not in the array

➢ This function would have no other purpose

➢ If we look at the function’s inputs and outputs, the 
connection between them won’t “make any sense”

➢ This function is called a hash function because it “makes 
hash” of its inputs



Assume the hash function h(x) = x%6.  
What bucket (position in the array) 
will 27 hash to?

A. 2

B. 3

C. 15

D. None of the above

[24, 37, __, __, __, 11]



Assume the hash function h(x) = x%6.  
What bucket (position in the array) 
will 39 hash to?

A. 2

B. 3

C. 4

D. None of the above

[24, 37, __, __, __, 11]



Case study: hashing students

➢ Suppose we want to store 
student objects in the array

➢ For each student we apply 
the following hash function:

hashCode(Student) = 

length (Student.lastName)

This gives us the following 
values:

• hashCode(‘Chan’)=4

• hashCode(‘Yam’)=3

• hashCode(‘Li’)=2

• hashCode(‘Jones’)=5

• hashCode(‘Taylor’)=6



Array of students: hash table

0

1

2 Li

3 Yam

4 Chan

5 Jones

6 Taylor

7

➢ We place the students into 
array slots which correspond 
to the computed hash 
values: 

○ hashCode(‘Chan’)=4

○ hashCode(‘Yam’)=3

○ hashCode(‘Li’)=2

○ hashCode(‘Jones’)=5

○ hashCode(‘Taylor’)=6



Good hash function: 
length of the last name 

0

1

2 Li

3 Yam

4 Chan

5 Jones

6 Taylor

7

➢Our hash function is easy to compute

➢An array needs to be of size 18 only, since 
the longest English surname, 
Featherstonehaugh (Guinness, 1996), is only 
17 characters long

➢We waste a little bit of space with entries 
0,1 of the array, which do not seem to be 
ever occupied. But the waste is not bad 
either



Bad hash function: 
length of the last name

0

1

2 Li

3 Yam

4 Chan

5 Jones

6 Taylor

7

➢ Suppose we have a new student: Smith

○hashValue(‘Smith’)=5

➢When several values are hashed to the 
same slot in the array, this is called a 
collision

➢Now what?



Looking for a good hash function: 
day of birth
➢What about the day of birth?

○ We know that this would be only 365 (366) possible 
values

○ The birth day of each student is randomly distributed 
across this range, and this hash function is easy to 
compute



Birthday paradox

➢For a college with only n=24 students, the probability that 
any 2 of theme were born on the same day is > 0.5

➢Let’s approximate this probability:

○ The probability of any two people not having the same birthday is: 

p =364/365

○ The number of possible student pairs is ( ) = n(n-1)/2 = 276

○ The probability for n students of not having birthday on the same 
date is pn(n-1)/2. For 24 students this gives: (364/365)276≈0.47. 

○ Then the probability of finding a pair of students colliding on their 
birthday is 1.00 - 0.47 = 0.53!

➢This is called a birthday paradox

n 
2

https://en.wikipedia.org/wiki/Birthday_problem


http://commons.wikimedia.org/wiki/File:Birthday_Paradox.svg

http://commons.wikimedia.org/wiki/File:Birthday_Paradox.svg


In search for a 
perfect hash function

A perfect hash function is a function that:
1. When applied to an Object, returns a number

2. When applied to equal Objects, returns the same number for 
each

3. When applied to unequal Objects returns different numbers 
for each, preventing collisions.

4. The numbers returned by hash function are evenly distributed 
between the range of the positions in the array

5. We also require for our hash function to be efficiently
computable

non-random inputs → random numbers? 



➢How to come up with this perfect hashing function?

➢In general – there is no such magic function   😞
○ In a few specific cases, where all the possible values are known in 

advance, it is possible to define a perfect hash function. For 
example hashing objects by their SSN numbers. But this will require 
an array to be of size 109

➢It seems that collisions are essentially unavoidable

➢What is the next best thing?
○ A perfect hash function would have told us exactly where to 

look
○ However, the best we can do is a function that tells us in 

what area of an array to start looking!

In search for a 
perfect hash function



Which of the following hash functions for Strings are 
legal?

A. All of the above

B. I, II

C. II, III

D. I, III

E. None of the above

I. Return a random number.
II. Return 0 if the string is of even length, 1 if it's of odd 

length.
III. Add together all the ASCII values of the characters.



Hashing strings by summing up 
their character values
➢It seems like a good idea to map each student 

surname into a number by adding up the ranks (or 
ASCII codes) of letters in this surname.

hashCode (S) =



What a great hash function!

a 1

b 2

c 3

d 4

e 5

f 6

g 7

h 8

i 9

j 10

k 11

l 12

m 13

n 14

o 15

p 16

r 17

s 18

t 19

u 20

v 21

w 22

x 23

y 24

z 25

◆ hashCode(‘Chan’)=3+8+1+14=26

◆ hashCode(‘Yam’)=24+1+13=38

◆ hashCode(‘Li’)=12+9=21

◆ hashCode(‘Jones’)=10+15+14+5+18=62

◆ hashCode(‘Taylor’)=19+1+24+12+15+17=88

◆ hashCode(‘Smith’)=18+13+9+19+8=67

hashCode (S) =



Still a lot of collisions!

a 1

b 2

c 3

d 4

e 5

f 6

g 7

h 8

i 9

j 10

k 11

l 12

m 13

n 14

o 15

p 16

r 17

s 18

t 19

u 20

v 21

w 22

x 23

y 24

z 25

➔ Not only hashCode(‘Yam’)=hashCode(‘May’)

➔ But hashCode(‘Chan’)= hashCode(‘Lam’) !

The function takes into account the value of 
each character in the string, but not the order 
of characters

hashCode (S) =



➢The summation is not a good choice for sequences of 
elements where the order has meaning

➢Alternative: choose A≠1, and use a hash function for string S
of length N:

➢This is a polynomial of degree N for A, and the elements 
(characters) of the String are the coefficients of this 
polynomial

Polynomial hashing scheme



Example: polynomial hashing

S1 = ‘Yam’

S2 = ‘May’

A = 31

hashCode(S1) = 24*312 + 1*311 + 13*310 = 23108

hashCode(S2) = 13*312 + 1*311 + 24*310 = 12548

a 1

b 2

c 3

d 4

e 5

f 6

g 7

h 8

i 9

j 10

k 11

l 12

m 13

n 14

o 15

p 16

r 17

s 18

t 19

u 20

v 21

w 22

x 23

y 24

z 25

➢Instead of using the summation of all character values, the 
polynomial hash function introduces interactions between 
different bits of successive characters that will provoke or 
spread randomness of the result 



How to compute polynomial of 
degree N in time O(N)
Horner’s method:

public int hashCode(){

int hash=0;

for (int i=0; i< length(); i++)

hash=hash*31+S[i];

return hash;

}

Let x=31, a0 … an represent n+1 characters of string S:

That is ~how 
hashCode() is 
implemented inside 
Java String class  

https://en.wikipedia.org/wiki/Horner%27s_method


Java String hashCode()

➢Polynomial hashing is quite a good hash function: for 
different strings it returns mostly different values which are 
well spread over the range of all possible integers

➢This hash function is also very efficient, since we need only 
n = length() steps to compute it



Reducing the range of hashCode 
to the capacity of the array 

➢The output of hash function is a number randomly distributed 
over the range of all integers. 

○ But we need to store our objects in the array of size M

➢Step 2: compression mapping

○ Converting integers in range ~ [0,400000000] to integers in 
range [0, M]

○ The simplest way to do it: |hashCode| MOD M

○ In practice, the MAD (Multiply Add and Divide) method:

|(A*hashCode+B) MOD M|

The best results when A, B and M are primes



Full hashing



Hashing Students to 7 slots

0

1 Roy

2 Yam

3 Lam

4 Li

5 Lee

6 Taylor

➔ Applying the polynomial 
hash function:

hashCode(‘Taylor’)=-880692189

hashCode(‘Yam’)=119397

hashCode(‘Li’)=345

hashCode(‘Lee’)=107020

hashCode(‘Lam’)=106904

hashCode(‘Roy’)=113116

➔ Applying the
|(11*hashCode+13) MOD 7| 
compression mapping:

arrayIndex(‘Taylor’)=6

arrayIndex(‘Yam’)=2

arrayIndex(‘Li’)=4

arrayIndex(‘Lee’)=5

arrayIndex(‘Lam’)=3

arrayIndex(‘Roy’)=1



No more collisions?

• Does a good hash always
produce different hash code 
for different strings?

The answer is NO.
If you run the code in the 
box, you will find out that 
• The words Aa and BB have 

the same hashCode
• Words variants and gelato 

hash to the same value
• …

• We have to be prepared to 
deal with collisions, since they 
are unavoidable

public static void main(String [] args) {

String [] words=new String[6];
words[0]="Aa";
words[1]="BB";
words[2]="variants";
words[3]="gelato";
words[4]="misused";
words[5]="horsemints";

for(int i=0;i<6;i++)   {
System.out.print("Hash code of "+words[i]+": ");
System.out.println(words[i].hashCode());

}
}



Collision resolution strategies

➢Open addressing:

○Linear probing

○Quadratic probing

○Double hashing

➢Separate chaining



Linear probing

➢What can we do when two different values attempt to 
occupy the same slot in the array?

○ Search from there for an empty location

■ Can stop searching when we find  the value or an empty 
location

■ Search must be end-around (circular array)



Add with linear probing

• Suppose you want to add seagull to this 
hash table

• Also suppose:
• hashCode(‘seagull’) = 143
• table[143] is not empty
• table[143] != seagull
• table[144] is not empty
• table[144] != seagull
• table[145] is empty

• Therefore, put seagull at location 145

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .



Find with linear probing: seagull

• Suppose you want to look up seagull in 
this hash table

• Also suppose:
• hashCode(seagull) = 143

• table[143] is not empty

• table[143] != seagull

• table[144] is not empty

• table[144] != seagull

• table[145] is not empty

• table[145] == seagull !

• We found seagull at location 145

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .



Find with linear probing: cow

• Suppose you want to look up cow in this 
hash table

• Also suppose:
• hashCode(cow) = 144

• table[144] is not empty
• table[144] != cow

• table[145] is not empty
• table[145] != cow

• table[146] is empty

• If cow were in the table, we should have 
found it by now

• Therefore, it isn’t here

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .



Add with linear probing

• Suppose you want to add hawk to this 
hash table

• Also suppose

• hashCode(hawk) = 143

• table[143] is not empty

• table[143] != hawk

• table[144] is not empty

• table[144] == hawk

• hawk is already in the table, so do 
nothing

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .



Add with linear probing

• Suppose you want to add cardinal to 
this hash table

• Also suppose:

• hashCode(cardinal) = 147

• The last location is 148

• 147 and 148 are occupied

• Solution:

• Treat the table as circular; after 
148 comes 0

• Hence, cardinal goes in location 0 
(or 1, or 2, or ...)

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .



General problem with 
open addressing: deletion

➢What happens if we delete 
sparrow?
○hashCode(sparrow)=143

○hashCode(seagull)=143

robin

sparrow

hawk

bluejay

owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull



General problem with 
open addressing: deletion

➢What happens if we delete 
sparrow?
○hashCode(sparrow)=143

○hashCode(seagull)=143

robin

hawk

bluejay

owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull



General problem with 
open addressing: deletion

➢What happens if we delete 
sparrow?
○hashCode(sparrow)=143

○hashCode(seagull)=143

➢Now when searching for seagull 
we check 
○ table[143] is empty

○ We can not find seagull!

robin

hawk

bluejay

owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull



Solution to the deletion problem

➢After we delete sparrow we put a 
special sign deleted instead of empty
○ hashCode(sparrow)=143
○ hashCode(seagull)=143

➢Now when searching for seagull we 
check 
○ table[143] is deleted
○ We skip it
○ table[144] is not empty
○ table[144] !=seagull
○ table[145]=seagull

We found seagull!

➢The deleted slots are filling up during 
the subsequent insertions

robin

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

*Deleted



Group Work

• Add the following keys, in order, to an initially 
empty Hash table of size N=13. The hash function 
is hash(x) = x % 13

10, 85, 15, 70, 20, 60, 30, 50, 65, 40, 90, 35

• Resolve collisions with linear probing



Another problem with linear 
probing: clustering

➢One problem with the above technique is the tendency to 
form “clusters”

➢A cluster is a consecutive area in the array not containing any 
open slots

➢The bigger a cluster gets, the more likely it is that new values 
will hash into the cluster, and make it even bigger

➢Clusters cause degradation in the efficiency of search

➢Here is a non-solution: instead of stepping one ahead, step k
locations ahead

○ The clusters are still there, they’re just harder to see

○ Unless k and the table size are mutually prime, some 
table locations are never even checked



Solution 1 to clustering problem: 
Quadratic probing

➢As before, we first try slot j=hashCode MOD M. 

➢If this slot is occupied, instead of trying slot j=|(j+1) MOD M|, 
try slot:

j=|(hashCode+i2) MOD M|, where i takes values with increment of 1 and 
we continue until j points to an empty slot

➢For example if position hashCode is initially 5, and M=7 we try:

j = 5 MOD 7 = 5

j =(5 + 12) MOD 7 = 6 MOD 7 = 6

j =(5 + 22) MOD 7 = 9 MOD 7 = 2

j =(5 + 32) MOD 7 = 14 MOD 7  = 0  etc.



Under quadratic probing, with the 
following array, where will an item that 
hashes to position 3 get placed?

A. 0

B. 2

C. 5

D. 9

E. None of the above

Index Value

0

1

2

3 X

4 X

5

6

7 X

8

9

j=|(hashCode+i2) MOD M|, hashCode = 3, M=10



Problems with Solution 1: 
Quadratic probing

➢Quadratic probing helps to avoid the clustering problem of a 
linear probing

➢But it creates its own kind of clustering, where the filled array 
slots “bounce” in the array in a fixed pattern

➢In practice, even if M is a prime, this strategy may fail to find 
an empty slot in the array that is just half full!



Solution 2 to clustering problem:
Double hashing
➢In this case we choose the secondary hash function: 

stepHash(k).

➢If the slot j=hashCode MOD M is occupied, we iteratively 
try the slots

j = |(hashCode+i*stepHash) MOD M|

➢The secondary hash function stepHash is not allowed to 
return 0

➢The common choice (Q is a prime):

stepHash(S)=Q-(hashCode(S) mod Q)



Collision resolution strategies

➢Open addressing:
○ Linear probing

○Quadratic probing

○Double hashing

⮚Separate chaining



Separate chaining

➢The previous solutions 
use open addressing: all 
entries go into a “flat” 
(unstructured) array

➢Another solution is to 
store in each location the 
head of a linked list of 
values that hash to that 
location

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .



Separate chaining: Find

➢The Hash table becomes an array of M
linked lists

➢To find an Object with hashCode i

○ Retrieve List head pointer from 
table[i]

○ Scan the chain of links

➢Running time depends on the length of 
the chain 

robin

sparrow

hawk

bluejay

owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull parrot



“If we are adding a new key to the hash table and the 
position at hashCode is already occupied by a different 
key, we can place the new key in the next available 
empty slot in the underlying array.”

This collision resolution technique is of type:

A. Open addressing

B. Direct addressing

C. Separate chaining

D. Linear probing

E. More than one is correct



Separate Chaining 
vs. Open Addressing

➢If the space is not an issue, separate chaining is the 
method of choice: it will create new list elements until the 
entire memory permits

➢If you want to be sure that you occupy exactly M array 
slots, use open addressing, and use the probing strategy 
which minimizes the clustering



ADT Set operations: performance

Search 
(Contains)

Add Remove Search 
(Contains)

Add Remove

log N log N log N log N log N log N

N 1** N N/2 N N/2

N N N 1* 1* 1*

N N N 1* 1* 1*

Implementation

Balanced Binary 
tree

Unsorted List (Array 
or Linked list)

Hash table with 
linear probing

Hash table with 
separate chaining

Worst case Expected

*Given a good hash function**If we know that new key is unique



Final notes about Hash table 
performance

➢Hash tables are actually surprisingly efficient

➢Until the array is about 70% full, the number of probes
(places looked at in the table) is typically only 2 or 3

➢Sophisticated mathematical analysis is required to prove
that the expected cost of inserting or looking something up 
in the hash table, is O(1)

➢Even when the table is nearly full (leading to occasional long 
searches), overall efficiency is usually still quite high



Common implementations 
of Set ADT using Hash Tables

➢ Set:

○ unordered_set in C++

○ HashSet in Java

○ set in Python



Now you know that in Python:

# list (array)

t = [1,2,3,4, …, n]

if 8 in t:

print('found')

# set

s = {1, 2, 3 … n}

if 8 in s:

print('found')

Time O(n) Time O(1)



Which tasks can be efficiently solved 
using the Hash Table implementation 
of Set ADT?

A. Removing duplicates from the array of integers

B. Quickly checking if student name is in the class roster

C. Testing if all the elements of a given array are unique

D. Given a list of family names and a given family name s, 
counting how many times s appears in the array.



We use an unsorted Array List to 
implement Set ADT.  
Choose the row with the correct runtime 
for each operation

Remove(k) Add(k) Find(k)

A O(1) O(n) O(1)

B O(log n) O(log n) O(log n)

C O(log n) O(n) O(log n)

D O(n) O(1) O(n)

E. None of the above



We use Balanced Binary Search Tree to 
implement Set ADT.  
Choose the row with the correct runtime 
for each operation

Remove(k) Add(k) Find(k)

A O(1) O(n) O(1)

B O(log n) O(log n) O(log n)

C O(log n) O(n) O(log n)

D O(n) O(1) O(n)

E. None of the above



We use a Hash Table to implement Set 
ADT.  
Choose the row with the correct runtime 
for each operation

Remove(k) Add(k) Find(k)

A O(1) O(n) O(1)

B O(log n) O(log n) O(log n)

C O(log n) O(n) O(log n)

D O(n) O(1) O(n)

E. None of the above



Sets and Maps

➢Sometimes we just want a set
of things—objects are either in 
it, or they are not in it

0

1

2 Li

3 Yam

4 Chan

5 Jones

6 Taylor

7

SET



Sets and Maps

➢Sometimes we want a map—a 
way of looking up one thing 
based on the value of another

○ We use a key to find a place 
in the map

○ The associated value is the 
information we are trying 
to look up

Key Value

0

1

2 Li Li info

3 Yam Yam info

4 Chan Chan info

5 Jones Jones info

6 Taylor Taylor info

7

MAP = ASSOCIATIVE ARRAY, DICTIONARY



What is a key and what is a value?

Key Phone number

Li 11111

Yam 22111

Chan 33111

Jones 11444

Taylor 55111

Key Last Name

11111 Li

22111 Yam

33111 Chan

11444 Jones

55111 Taylor

The answer: depends on the application



Abstract Data Type: Map

Specification
Map is an Abstract Data Type which supports the 
following operations:

➔ Set (k, e) - adds element e to the collection and 
associates it with key k

➔ Get (k) - returns the element associated with key k

➔ Contains (k) - returns True if there is an element 
associated with the key k. Returns False otherwise

➔ Remove (k) - removes element with key k from the 
collection

● The main efficiency of both Set and Map comes from the 
ability to find the item quickly



Common implementations 
of Set and Map ADT

➢ Set:

○ unordered_set in C++

○ HashSet in Java

○ set in Python

➢ Map:

○ unordered_map in C++

○ HashMap in Java

○ dict in Python


