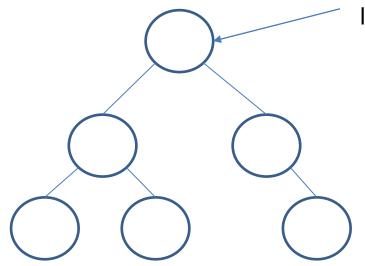
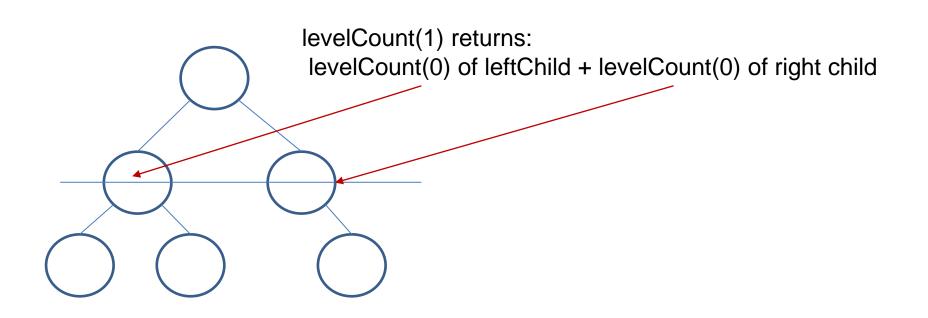
Lab 6. Level count

Each tree object can count nodes at all levels

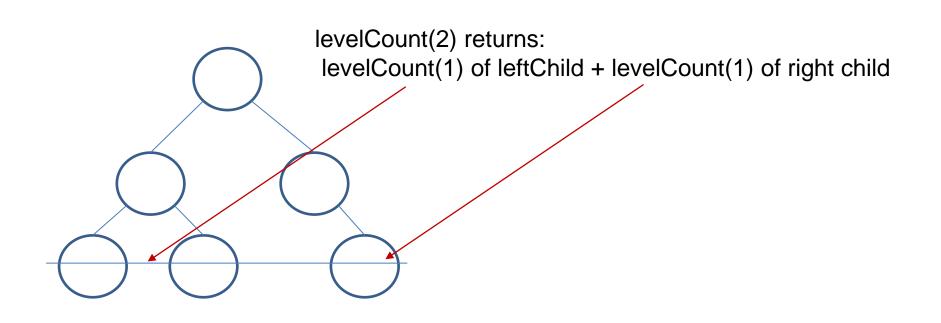
levelCount(0) returns 1

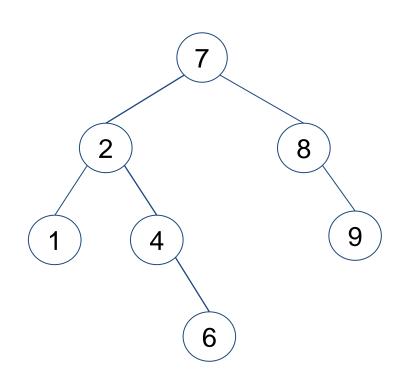


Lab 6. Level count



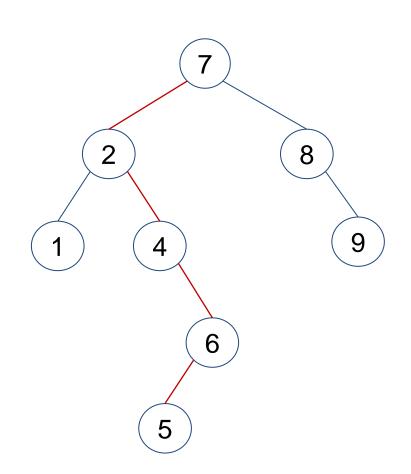
Lab 6. Level count





Is this tree balanced?

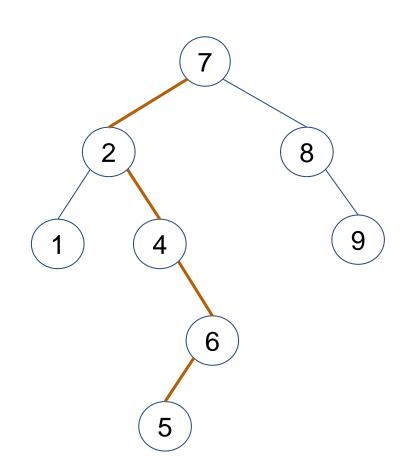
A. Yes B. No



We insert node 5

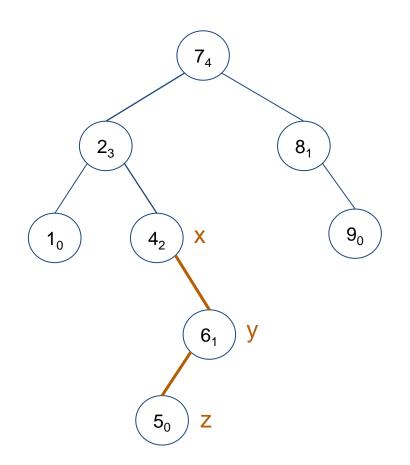
Is the tree still balanced?

A. Yes B. No



Which node is unbalanced (needs rotation)?

- A. Node 6
- B. Node 4
- C. Node 2
- D. Node 7
- E. None of the above

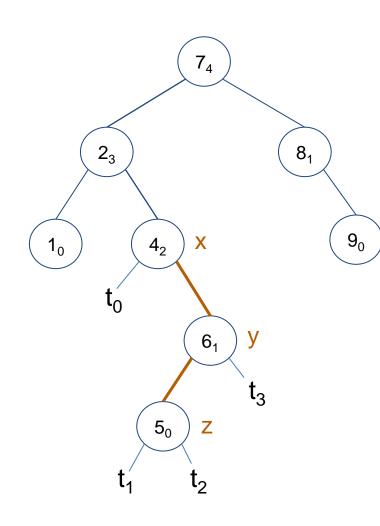


The rebalancing algorithm in the lab is similar to the algorithm we learned in class

Going up from the point of insertion, you find the first unbalanced node and from it you collect its child and its grandchild, moving always into the child with the larger height:

$$4 \rightarrow 6 \rightarrow 5$$

$$x \rightarrow y \rightarrow z$$



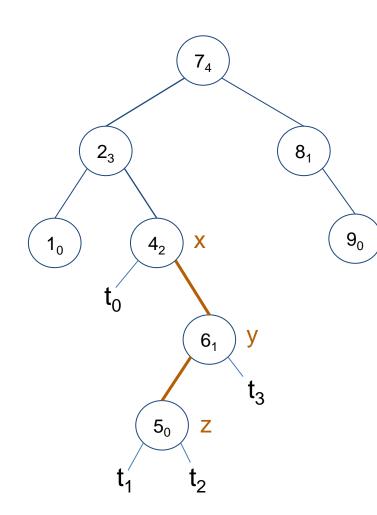
$$\begin{array}{c} 4 \rightarrow 6 \rightarrow 5 \\ x \rightarrow y \rightarrow z \end{array}$$

Now you need to consider 4 different cases:

Case 1: right-left heavy Determine order for this case: a=x, b=z, c=y, a<b<c

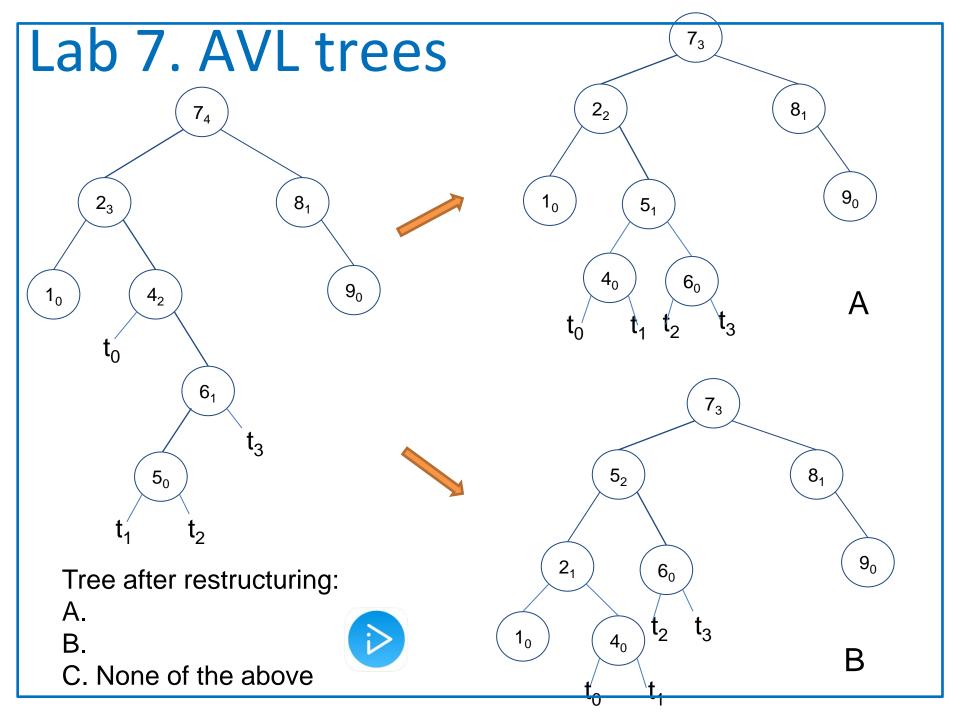
Collect child subtrees to be reattached:

 $t_0 = x.left, t_1 = z.left, t_2 = z.right, t_3 = y.right$



Restructuring is implemented: you only need to consider all the cases and identify 3 nodes and 4 children

a=x, b=z, c=y, a<b<c



Priority Queue ADT Binary heaps

Lecture 22 by Marina Barsky

Priority Queue ADT

- A Priority Queue is a generalization of a Queue where each element is assigned a priority and elements come out in order of priority
- If the priority is the earliest time they were added to the queue then Priority Queue becomes a regular FIFO Queue
- We are interested in a case when priority of each element is not related to the time when the element was added to the queue

Priority Queue ADT

Specification

Priority Queue is an Abstract Data Type supporting the following main operations:

- → top() get an element with the highest priority
- → enqueue(e,p)* adds a new element e with priority p
- → dequeue() removes and returns the element with the highest priority

*To simplify the discussion we use enqueue(p), where p is a number which reflects the priority

Priority Queue: possible Data Structures

	enqueue	dequeue
Unsorted array/list	O(1)	O(n)
Sorted array/list	O(n)	O(1)

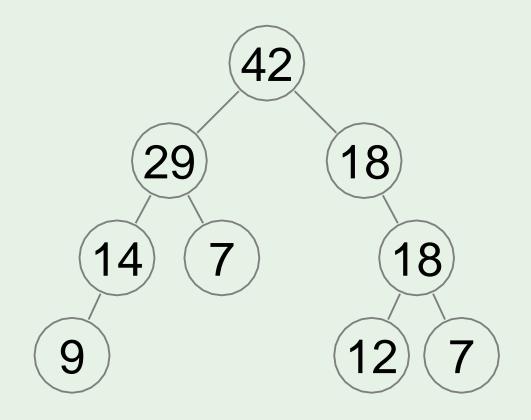
Binary max-heap

Definition

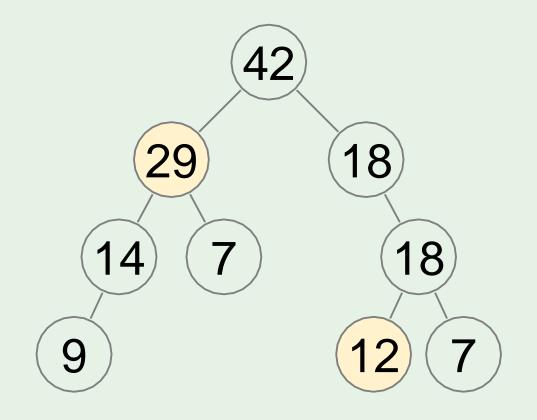
Binary max-heap is a **binary** tree where the value of each node is at least (\geq) the values of its children.

https://visualgo.net/en/heap?slide=1

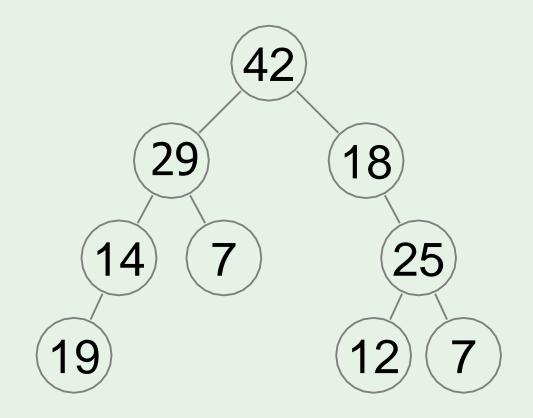
Heap?



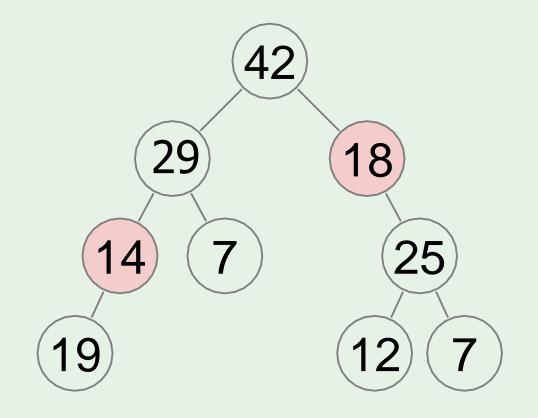
Heap? Yes



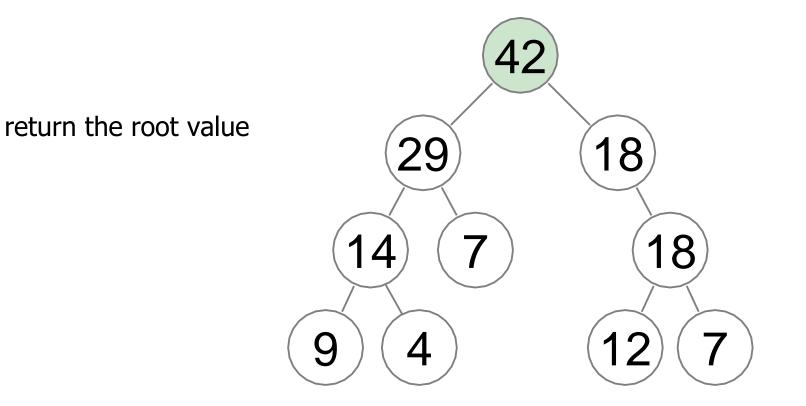
Heap?



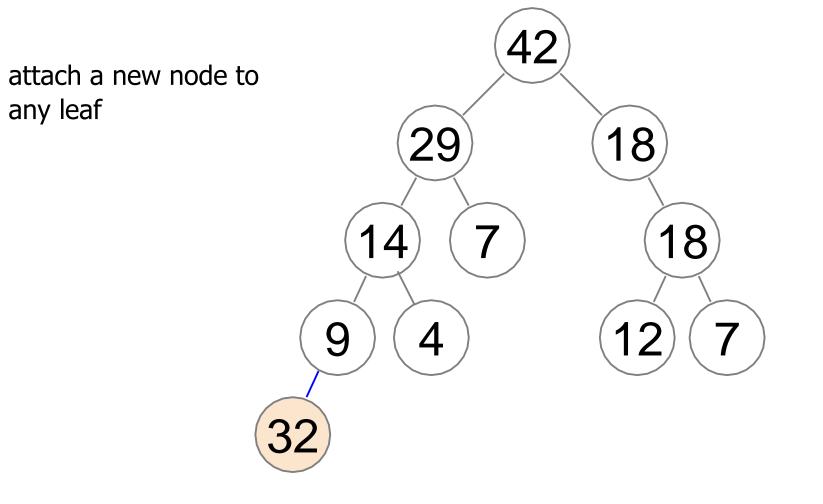
Heap? No

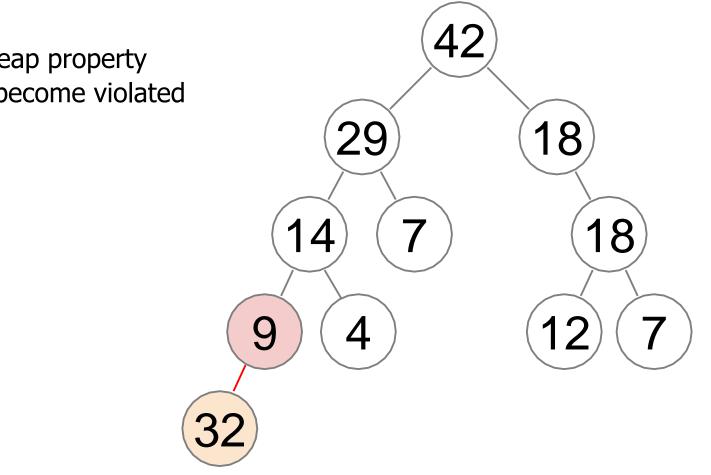


Heap operations: top

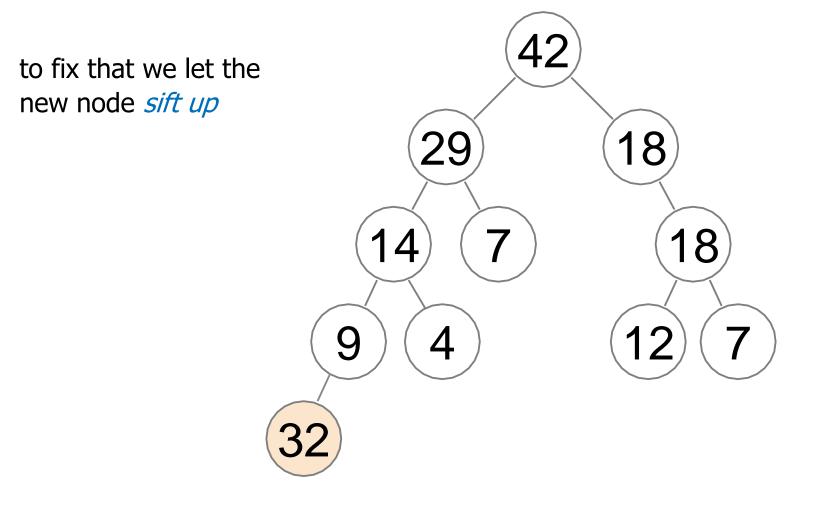


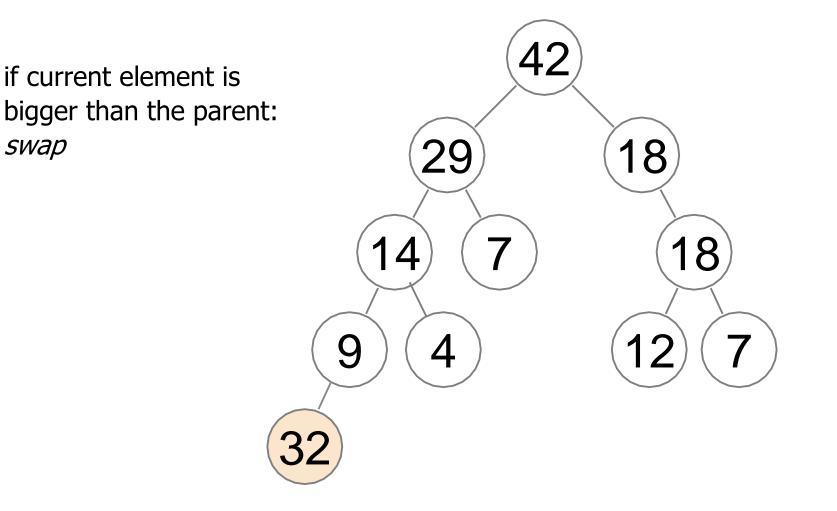
Run-time: O(1)

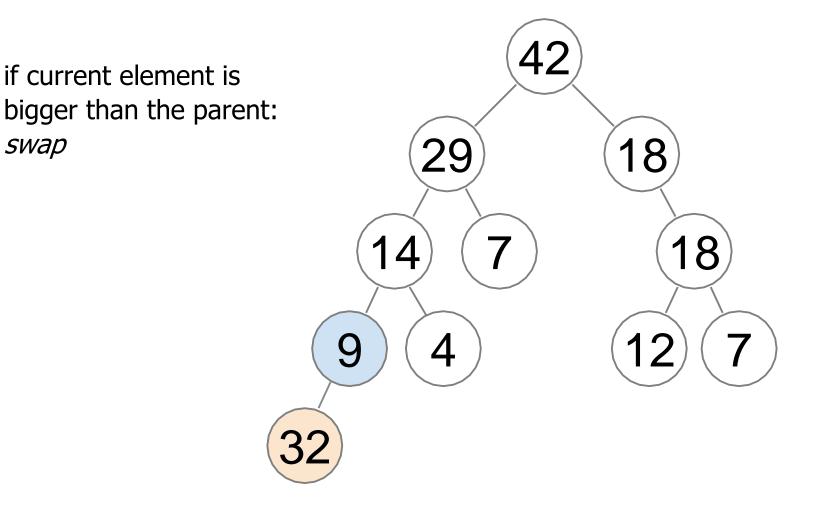


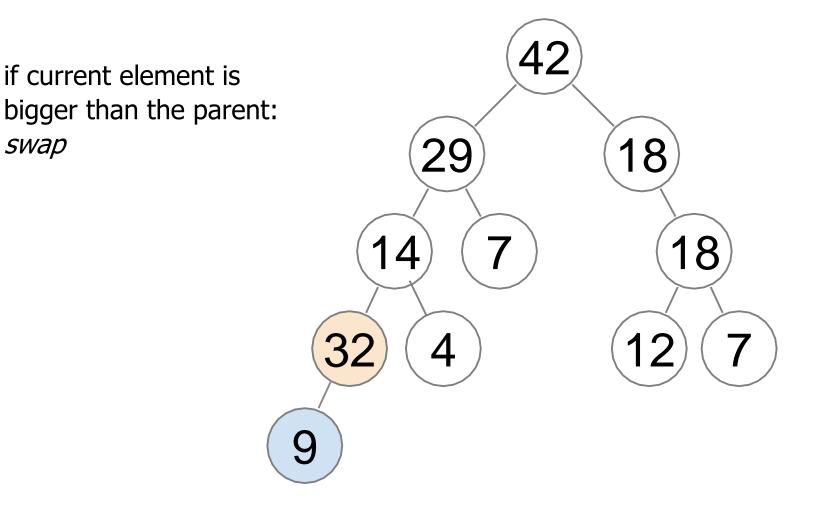


the heap property may become violated



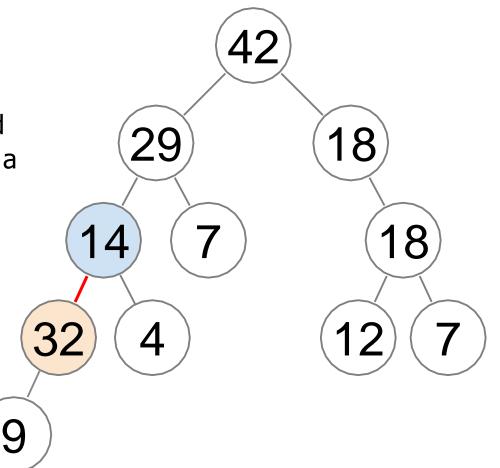


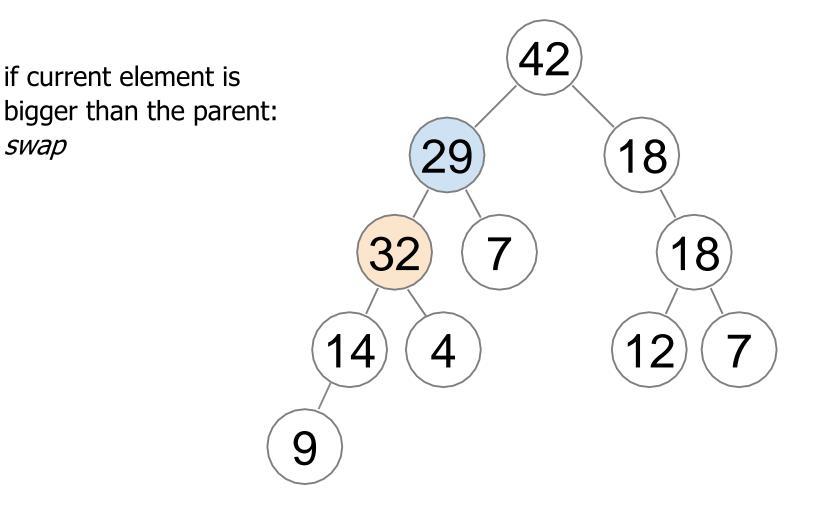


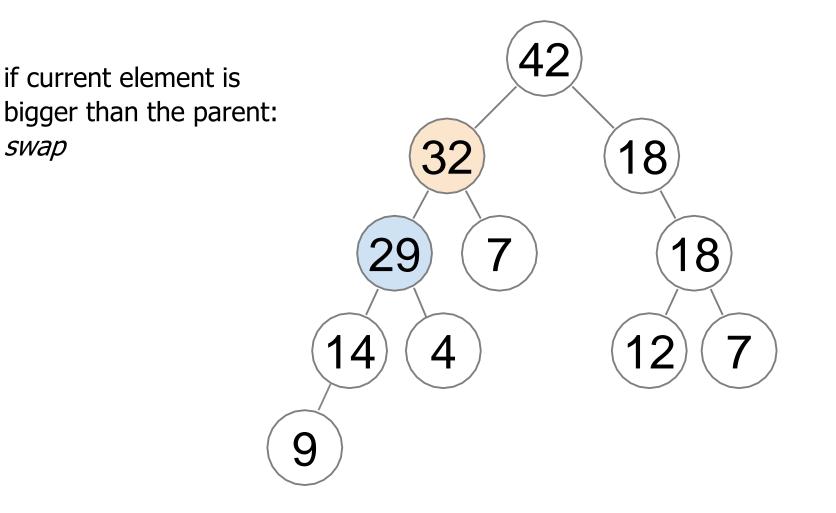


if current element is bigger than the parent: swap

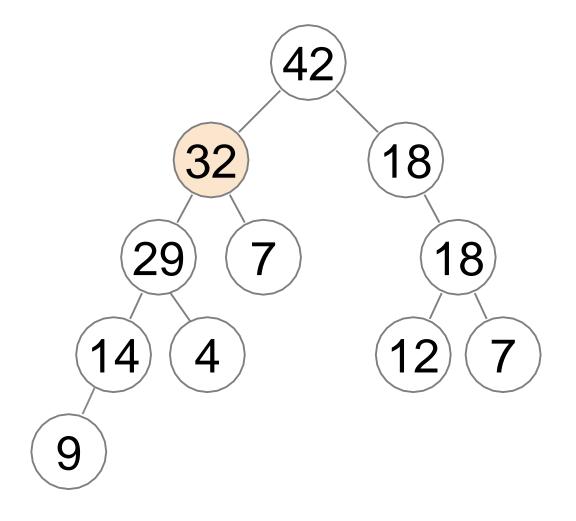
this works because the heap property is violated only on a single edge at a time



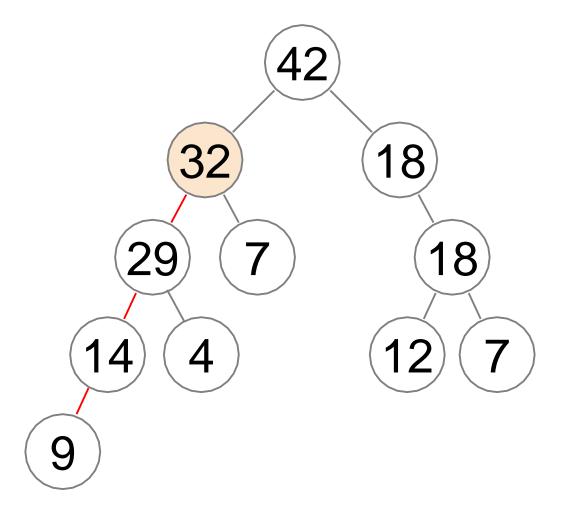




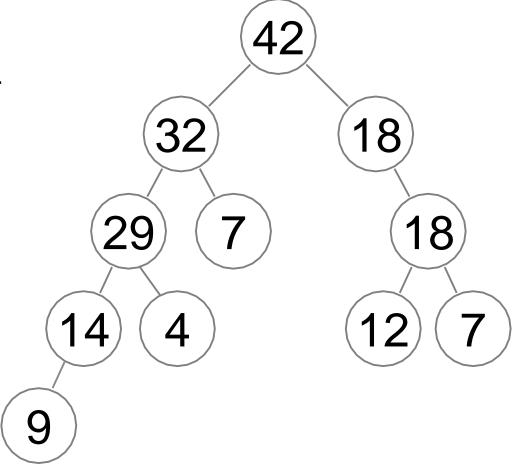
heap property is restored



running time of *enqueue* depends on how many times we need to *swap*



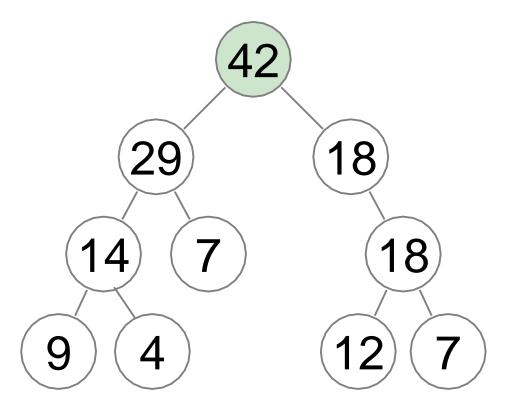
with each swap, the problematic node moves one node closer to the root



running time: O(tree height)

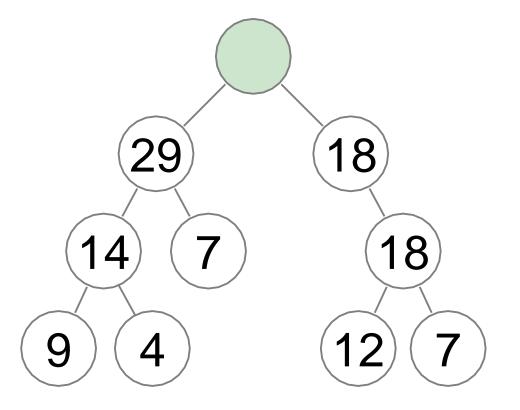
Heap operations: dequeue

remove and return the root value



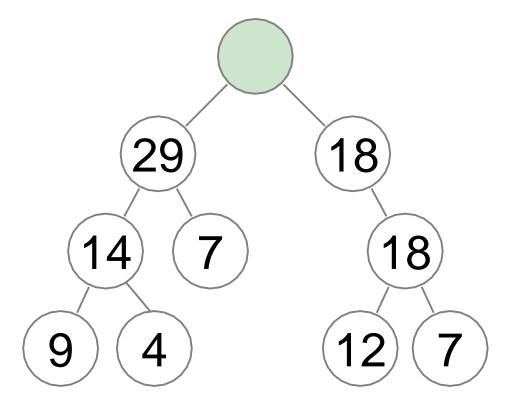
Heap operations: *dequeue*

remove the root value



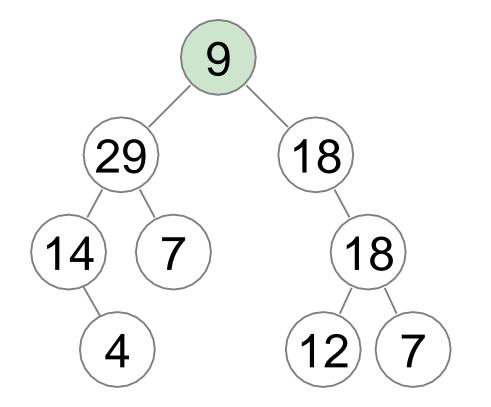
Heap operations: dequeue

replace the empty node value with any leaf node value and remove the leaf



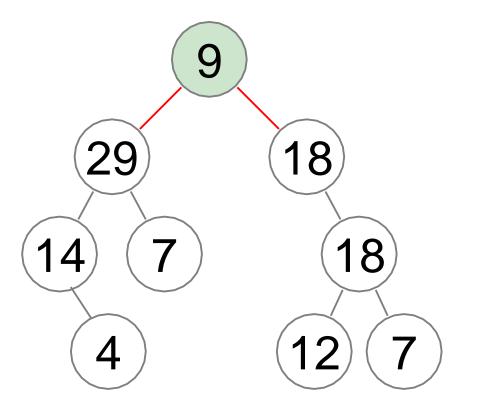
Heap operations: dequeue

replace the empty node value with any leaf node value and remove the leaf



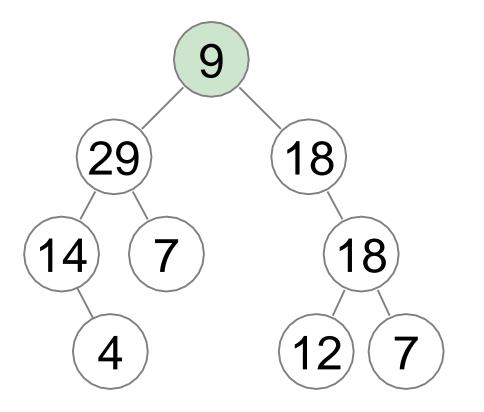
Heap operations: *dequeue*

again, this may violate the heap property

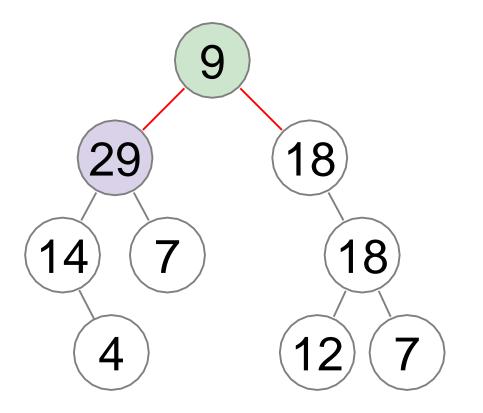


Heap operations: dequeue

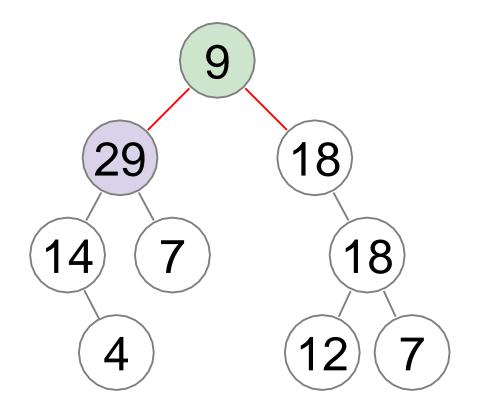
to fix it we let the problematic node *sift down*



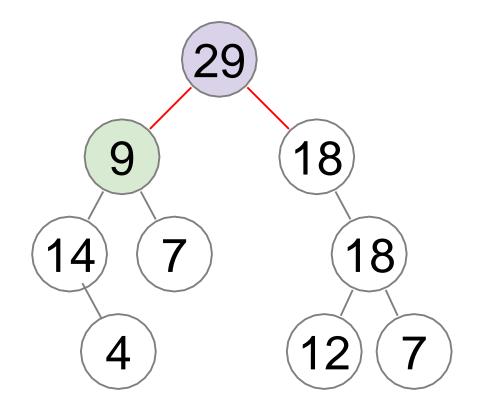
if current node is smaller than one of its children, swap it with the largest child



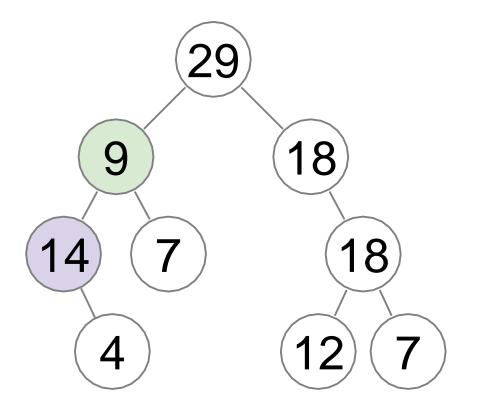
swapping with the largest child automatically restores both broken edges



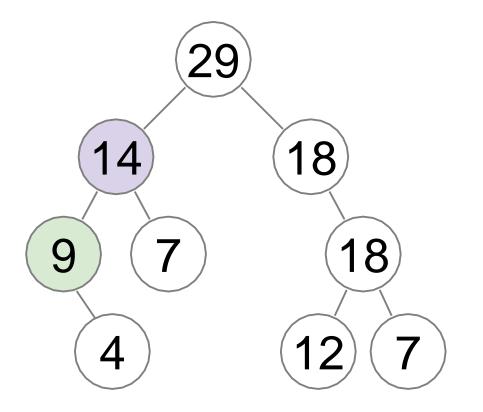
swapping with the largest child automatically restores both broken edges



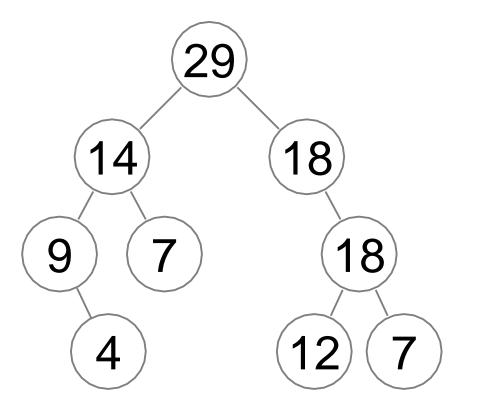
if current node is smaller than one of its children, swap it with the largest child



if current node is smaller than one of its children, swap it with the largest child



the heap property is restored



Suppose you have a Binary Search Tree. Is it also a heap?

- A. Yes
- B. No

C. Sometimes

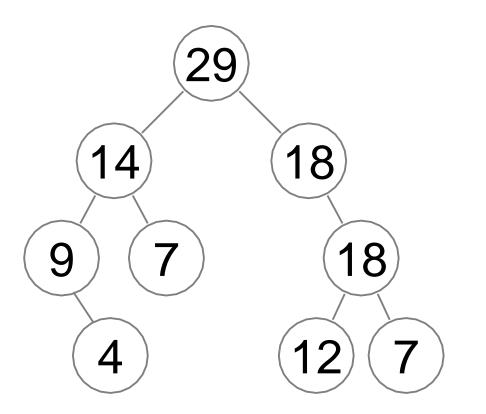
Suppose you have a binary heap. Is it also a binary search tree?

- A. Yes
- B. No

C. Sometimes

Heap operations: enqueue and dequeue

Running time depends on how many times the *swap* is performed to restore the heap



running time: O(tree height)

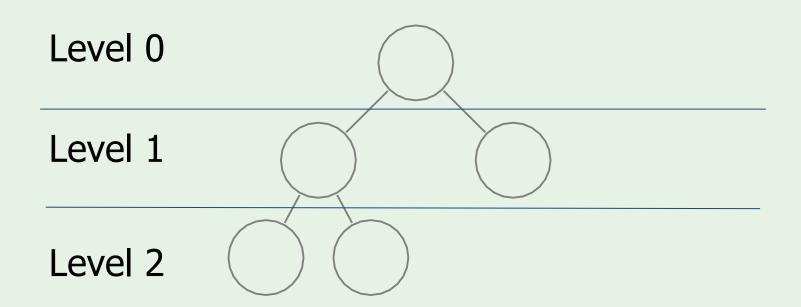
We want a tree with the min possible height

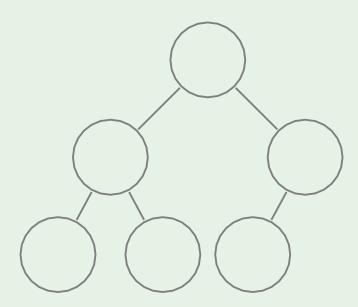
How to Keep a Tree Shallow?

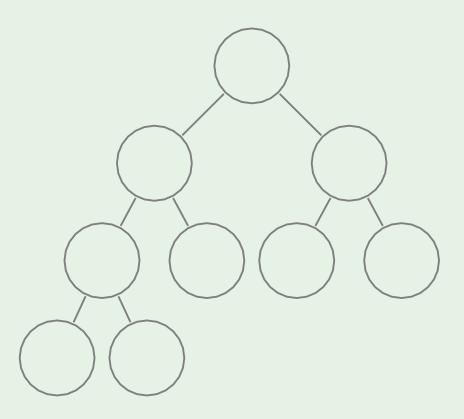
Definition

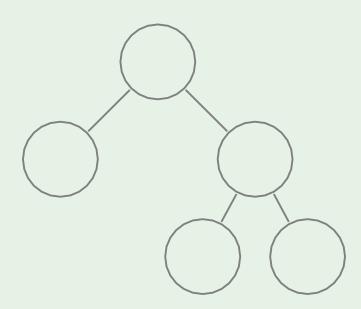
A binary tree is *complete* if all its levels are at full capacity except possibly the last one which is filled from left to right.

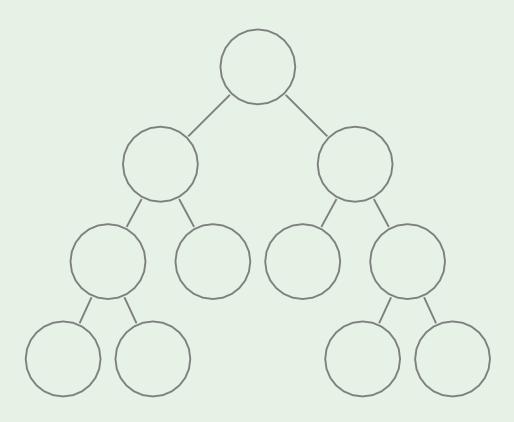
Example: complete binary tree











Advantage of Complete Binary Trees: low height

Theorem

A complete binary tree with n total nodes has height at most $O(\log n)$.

Proof

- Complete the last level of the tree if it is not full to get a full binary tree.
- □ This full tree has $n' \ge n$ nodes and the same height *h*.
- At level 0 we have 2⁰=1 node, at the first level: 2¹=2 nodes, at level k: 2^k nodes, and the total number of levels is h-1. Then the total number of nodes:

$$n' = 1 + 2^{1} + 2^{2} + \dots 2^{h-1} = \frac{2^{(h-1)+1} - 1}{2 - 1} = 2^{h} - 1$$

(sum of geom. series)

■ Note that $n' \le 2n$, because the actual total number of nodes *n* is between $2^{h-2+1}-1 + 1 = 2^{h-1}$ and $2^h - 1$

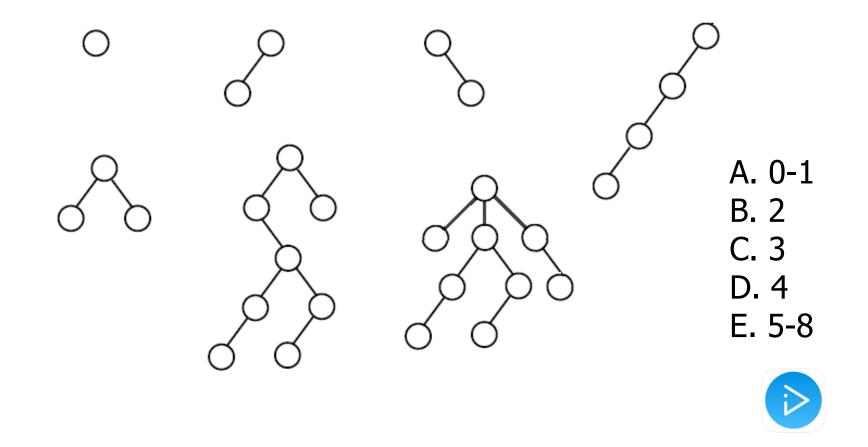
$$\Box \quad \text{Then } n' = 2^h - 1 \text{ and hence:}$$
$$h = \log_2(n' + 1) \le \log_2(2n + 1) = O(\log n)$$

If we store Heap as a Complete Binary Tree:

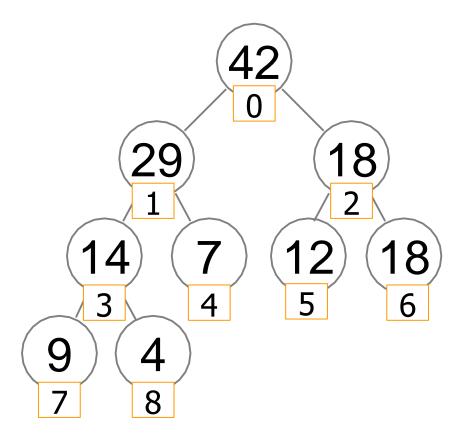
- $\rightarrow \quad Top \text{ in time O(1)}$
- $\rightarrow \quad Dequeue \text{ in time } O(\log n)$
- $\rightarrow \quad Enqueue \text{ in time } O(\log n)$

As long as we keep the tree complete

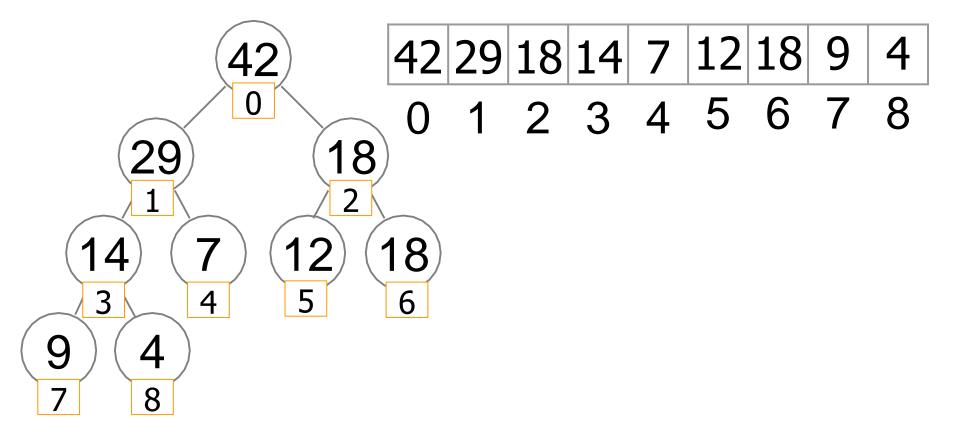
How many of these structures represent a complete binary tree?



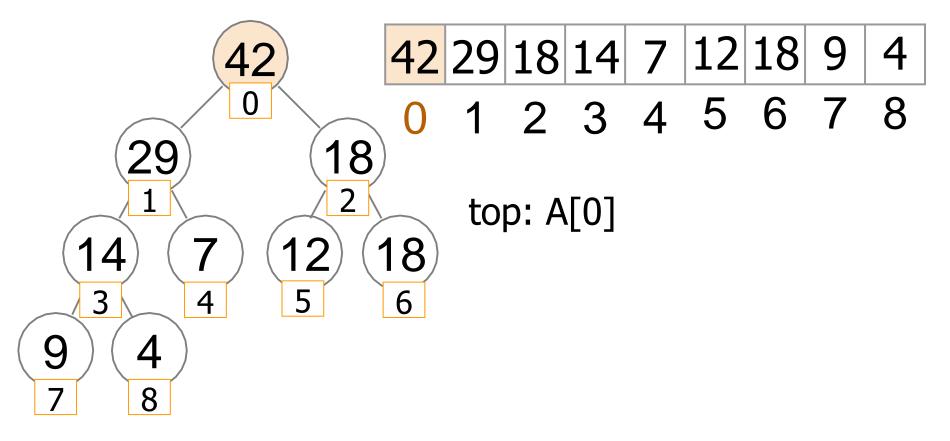
A Complete Binary Tree can be stored in an Array



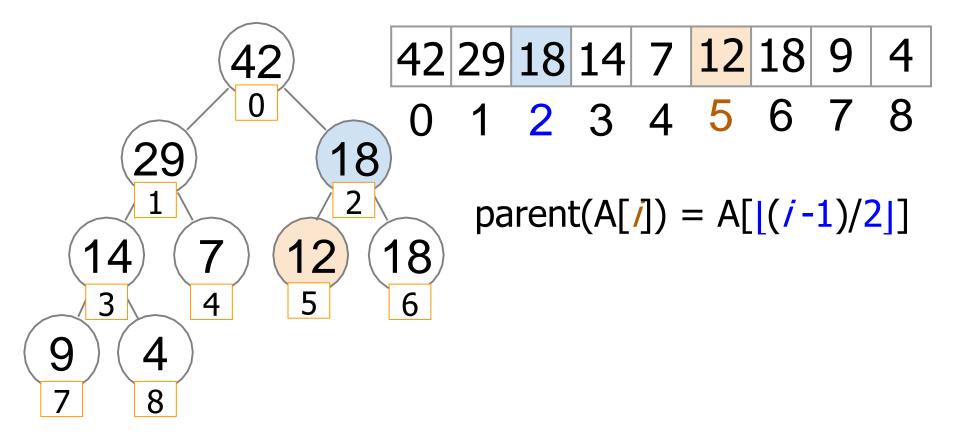
A Complete Binary Tree can be stored in an Array



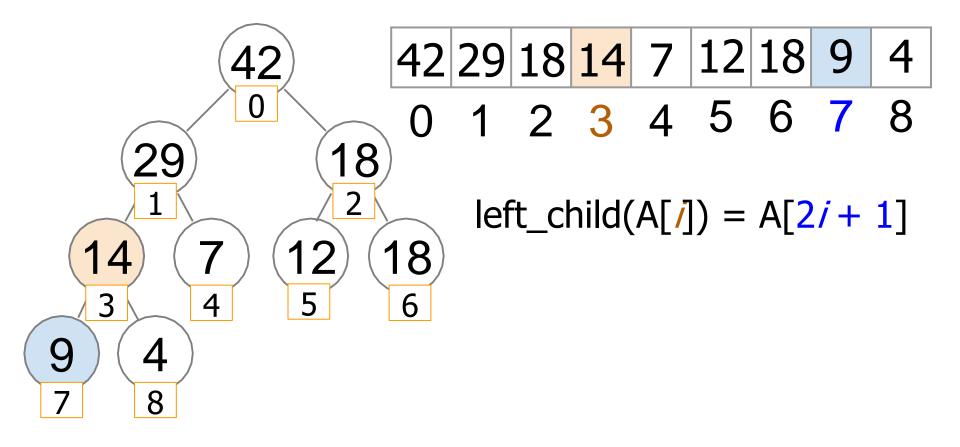
A Complete Binary Tree can be stored in an Array



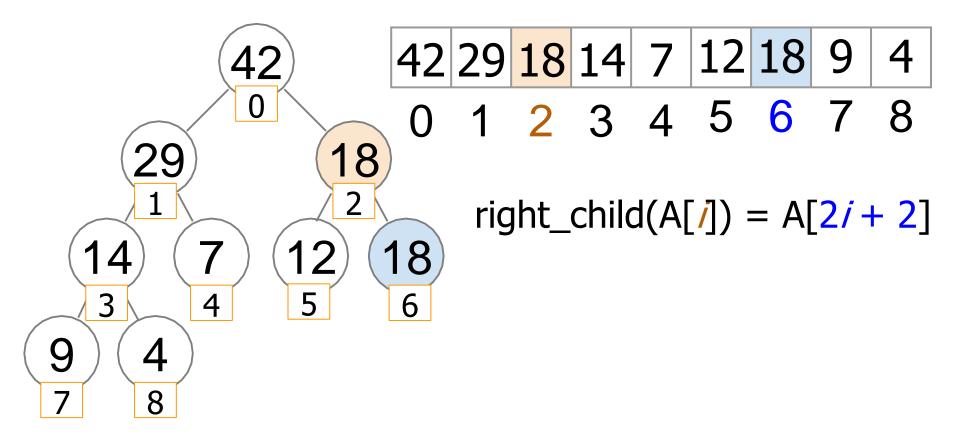
Tree operations in a heap array



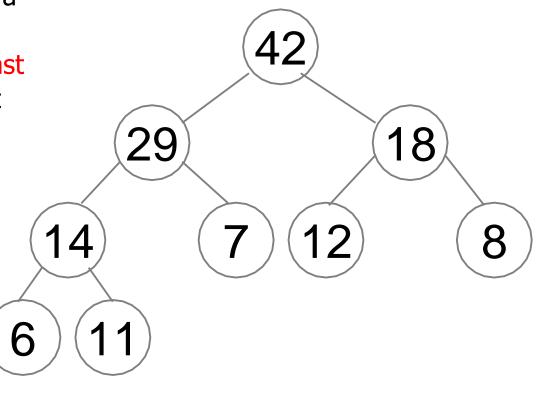
Tree operations in a heap array



Tree operations in a heap array



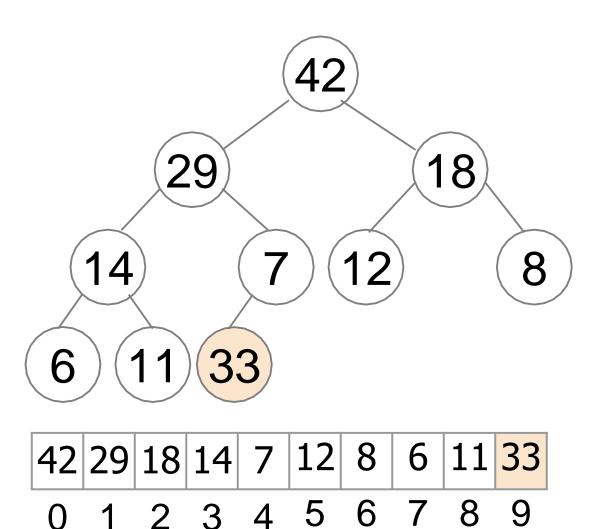
to add an element, insert it as a leaf in the rightmost vacant position in the last level (the last position of the array) and let it *sift up*



42 29 18 14 7 12 8 6 11 6 8 5 2 3 9 1 Ω

 $\left(\right)$

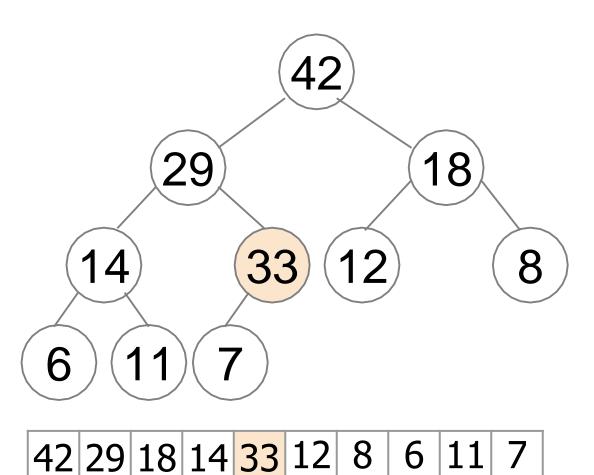
parent(i) = |(i-1)/2|



parent(9) = 4swap(A[9],A[4])

 $\left(\right)$

 $parent(i) = \lfloor (i-1)/2 \rfloor$



1 2 3 4

5 6 7

8

9

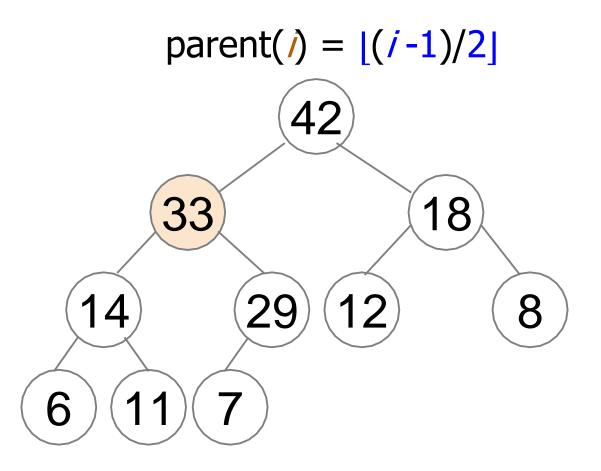
parent(9) = 4swap(A[9],A[4])

parent(4) = 1swap(A[4],A[1])

parent(9) = 4 swap(A[9],A[4])

parent(4) = 1swap(A[4],A[1])

parent(1) = 0 OK stop



42 33 18 14 29 12 8 6 11 7 5 6 7 8 9 1 2 3 4 $\left(\right)$

Heap array: *dequeue()*

Similarly, to extract the maximum value, replace the root by the last leaf and let it *sift down*

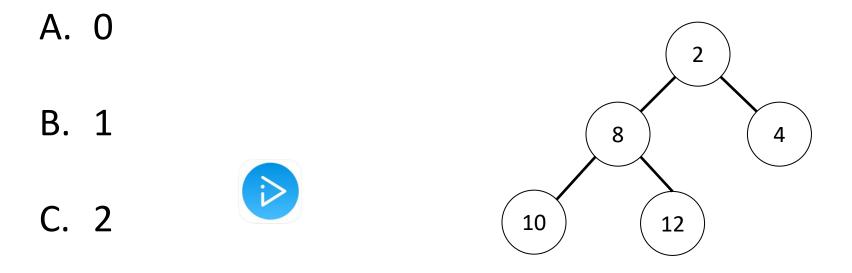
Binary Min-Heap

Definition

Binary **min**-heap is a binary tree where the value of each node is **at most** the values of its children.

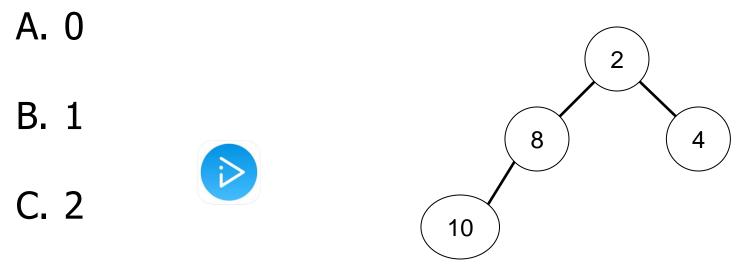
Can be implemented similarly to max-heap

How many swaps will we do after we call dequeue() on this **min**-heap?



- D. 3
- E. None of the above

If we insert 7 into this binary **min**-heap, how many swaps will we need to do?

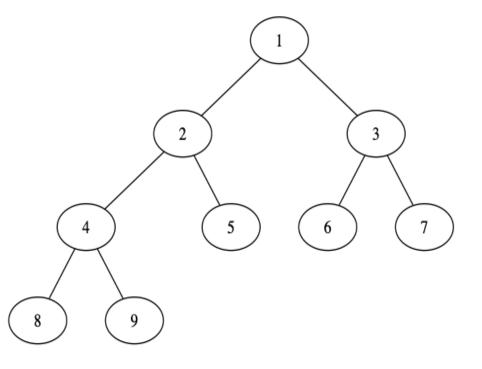


D. 3

E. None of the above

What is the array representation of the following min-heap tree?

- A. [8, 4, 9, 2, 5, 1, 6, 3, 7]
- в. [1, 2, 3, 4, 5, 6, 7, 8, 9]
- c. [1, 2, 4, 8, 9, 5, 3, 6, 7]
- D. [8, 9, 4, 5, 2, 6, 7, 3, 1]
- E. Something else



root = 0 left = $2 \times i+1$ right = $2 \times i + 2$

Priority Queue ADT: possible Data Structures

	top	enqueue	dequeue
Unsorted array/list	O(n)	O(1)	O(n)
Sorted array/list	O(1)	O(n)	O(1)
Balanced BST	O(log n)	O(log n)	O(log n)
Binary heap	O(1)	O(log n)	O(log n)

Priority Queue with binary heap: notes

- Binary heap can be used to implement *Priority Queue* **ADT**
- Heap implementation is very efficient: all required update operations work in time O(log n)
- Heap implementation as an array is also space efficient: we only store an array of priorities.
 Parent-child relationships are not stored, but are implied by the positions in the array

Common implementations of Priority Queues using Heaps

- C++: *priority_queue* in *std* library
- Java: *PriorityQueue* in *java.util* package
- Python: *heapq* (separate module)

Underneath is a Dynamic Array