
➢ Dijkstra’s algorithm: finding a shortest path in
a graph

➢ Prim’s algorithm: constructing a minimum
spanning tree of a graph

➢ Huffman encoding: constructing an optimum
prefix-free encoding of a string

➢ Heap sort: sorting a given sequence

Many algorithms use Priority Queues

Using Heaps for Sorting
Heap Sort

Lecture 23
by Marina Barsky

We can sort using Heaps!

➢ After array elements are enqueued –

➢ Produce a sorted array by dequeuing them

HeapSortNaive (array A of size n)

create an empty max-heap

for i from 0 to n-1:

enqueue (A[i])

for i from n-1 downto 0:

A[i] ← dequeue()

Algorithm HeapSort

What is the running time of a naïve
heap-based sorting algorithm?

A. O(1)

B. O(log n)

C. O(n)

D. O(n * log n)

E. None of the above

➢ The resulting algorithm has running time O(n log n)

➢ Natural generalization of selection sort : instead of
simply scanning the rest of the array to find the
maximum value, use a smart data structure

➢ Uses additional space O(n) to store the heap

Heapsort: naive

➢ Turn input array A of size n into a heap of size m=n by
rearranging its elements

➢ After this, extract max at A[0] and swap it with the
element A[m-1]

➢ Decrement heap size m:= m -1

➢ Restore heap (sift_down)

➢ Continue until heap size m=1

In-place Heapsort:
all is done inside the input array

How to Heapify an array

29

14

9

12

42

7

418

18

1

0

2

3 4 5 6

7 8

29 14 7 9 42 18 4 12 18
0 1 2 3 4 5 6 7 8

not a heap H ➔ Lets’ go bottom up and repair
heap property for all subtrees
rooted at current node

How to Heapify an array

29

14

9

12

42

7

418

18

1

0

2

3 4 5 6

7 8

29 14 7 9 42 18 4 12 18

0 1 2 3 4 5 6 7 8

not a heap H ➔ Lets’ go bottom up and repair
heap property for all subtrees
rooted at current node

➔ If current node is a leaf, then
it does not need to be repaired

➔ How do we find the first from
the end node that is not a
leaf?

How to Heapify an array

29

14

9

12

42

7

418

18

1

0

2

3 4 5 6

7 8

29 14 7 9 42 18 4 12 18
0 1 2 3 4 5 6 7 8

not a heap H ➔ Lets’ go bottom up and repair
heap property for all subtrees
rooted at current node

➔ If current node is a leaf, then
it does not need to be repaired

➔ How do we find the first from
the end node that is not a
leaf?

We find the parent of the
last leaf H[n - 1]:
parent(i) = ⌊(i -1)/2⌋

How to Heapify an array

29

14

9

12

42

7

418

18

1

0

2

3 4 5 6

7 8

29 14 7 9 42 18 4 12 18
0 1 2 3 4 5 6 7 8

not a heap H ➔ We need to process all
elements starting from
position i=⌊(8-1)/2⌋ = 3 until

position 0 and repair heap
violations by calling
sift_down(i)

How to Heapify an array

29

14

9

12

42

7

418

18

1

0

2

3 4 5 6

7 8

29 14 7 9 42 18 4 12 18

0 1 2 3 4 5 6 7 8

not a heap H ➔ We need to process all
elements starting from
position i=⌊(8-1)/2⌋ = 3 until

position 0 and repair heap
violations by calling
sift_down(i)

sift_down(3)

How to Heapify an array

29

14

18

12

42

7

418

9

1

0

2

3 4 5 6

7 8

not a heap H ➔ All the nodes H[3...8] are
now repaired

All these nodes
satisfy heap
property

29 14 7 18 42 18 4 12 9

0 1 2 3 4 5 6 7 8

How to Heapify an array

29

14

18

12

42

7

418

9

1

0

2

3 4 5 6

7 8

29 14 7 18 42 18 4 12 9
0 1 2 3 4 5 6 7 8

not a heap H ➔ the next node we need to fix
is at position 2 of the array

sift_down(2)

How to Heapify an array

29

14

18

12

42

18

47

9

1

0

2

3 4 5 6

7 8

not a heap H ➔ the next node we need to fix
is at position 2 of the array

sift_down(2)

29 14 18 18 42 7 4 12 9
0 1 2 3 4 5 6 7 8

How to Heapify an array

29

14

18

12

42

18

47

9

1

0

2

3 4 5 6

7 8

29 14 18 18 42 7 4 12 9

0 1 2 3 4 5 6 7 8

not a heap H ➔ the next node we need to fix
is at position 1 of the array

sift_down(1)

How to Heapify an array

29

42

18

12

14

18

47

9

1

0

2

3 4 5 6

7 8

29 42 18 18 14 7 4 12 9
0 1 2 3 4 5 6 7 8

not a heap H ➔ the next node we need to fix
is at position 1 of the array

sift_down(1)

How to Heapify an array

29

42

18

12

14

18

47

9

1

0

2

3 4 5 6

7 8

29 42 18 18 14 7 4 12 9

0 1 2 3 4 5 6 7 8

not a heap H ➔ Finally, we fix the root at
position 0

sift_down(0)

How to Heapify an array

42

29

18

12

14

18

47

9

1

0

2

3 4 5 6

7 8

42 29 18 18 14 7 4 12 9

0 1 2 3 4 5 6 7 8

not a heap H ➔ Finally, we fix the root at
position 0

sift_down(0)

How to Heapify an array

42

29

18

12

14

18

47

9

1

0

2

3 4 5 6

7 8

42 29 18 18 14 7 4 12 9

0 1 2 3 4 5 6 7 8

heap H ➔ We rearranged the elements
of the input array such that it
is now a heap

➔ Next, we can use dequeue
inside the array itself to sort
it in-place

First - turn Array into a Heap

Heapify (array A of size n)

last ← n - 1

for i from ⌊(last -1)/2⌋ down to 0:

sift_down (i)

Group Work

heapify the following array:
10, 85, 15, 70, 20, 60, 30, 50, 65, 40

What is the state of array X after the
first sift_down in heapify(X)?

10 85 15 70 20 60 30 50 65 40
0 1 2 3 4 5 6 7 8 9

85 10 15 70 20 60 30 50 65 40

0 1 2 3 4 5 6 7 8 9

X

10 85 15 70 65 60 30 50 20 40

0 1 2 3 4 5 6 7 8 9

Converting X into max-heap

C. None of the above

A.

B.

In-place Heap Sort

HeapSort (array A of size n)

Heapify (A)

m ← n

repeat (n − 1) times:

swap A[0] and A[m-1]

m ← m − 1

sift_down (heap of size m, 0)

No additional space (in-place)

➢ The running time of Heapify is O(n log n) since

we call sift_down for O(n) nodes

➢ If a node is a leaf then we do not call sift_down
on it

➢ If a node is close to the leaves, then sifting it
down does not take log n

➢ We have many such nodes!

➢ Is our estimate of the running time of Heapify too

pessimistic?

Run-time of Heapify

the height
j of a heap
node at
level i

Definition

If we count levels of the
heap from top to bottom,
then the height of a heap
node at level i is defined
to be j = h - i, where h is
the total height of the
heap

level 0

level 1

level i

level h

When we are repairing the heap, for each node at level i
we need to swap at most j values

The height of nodes at level i

Run-time of Heapify

level # nodes node height

h-h 2h-h h

... ...

h-2 2h-2 2

h-1 ≤ 2h-1 1

h-0 ≤ 2h-0 0

Total work:

, where j represents the height of the
nodes at each of 0...h tree levels

This expression evaluates to O(n)

≤ 2h∗2 = O(2h) = O(2log n) = O(n)

The running time of Heapify is O(n)

To convert an arbitrary array into a heap takes
linear time and no additional space!

In-place Heap Sort

HeapSort (array A of size n)

Heapify (A)

m ← n

repeat (n − 1) times:

swap A[0] and A[m-1]

m ← m − 1

sift_down (heap of size m, 0)

No additional space (in-place)

What is the running time of an
improved heapsort?

A. O(1)

B. O(log n)

C. O(n)

D. O(n * log n)

E. None of the above

Group Work

Sort the heapified array using the last step
of in-place HeapSort

85 70 60 65 40 15 30 50 10 20
0 1 2 3 4 5 6 7 8 9

Max-

heap

Application: Top-k Problem

Input: An array A of size n, an integer

1 ≤ k ≤ n.

Output: k largest elements of A (top-k).

Can be solved in time: O (n) + O (k log n)

