
➢ Dijkstra’s algorithm: finding a shortest path in 
a graph

➢ Prim’s algorithm: constructing a minimum 
spanning tree of a graph 

➢ Huffman encoding: constructing an optimum 
prefix-free encoding of a string  

➢ Heap sort: sorting a given sequence

Many algorithms use Priority Queues



Using Heaps for Sorting 
Heap Sort

Lecture 23
by Marina Barsky



We can sort using Heaps! 

➢ After array elements are enqueued –

➢ Produce a sorted array by dequeuing them



HeapSortNaive (array A of size n)

create an empty max-heap

for  i from 0 to n-1:

enqueue (A[i ])

for  i from n-1 downto 0:

A[i ] ← dequeue()

Algorithm HeapSort



What is the running time of a naïve 
heap-based sorting algorithm?

A. O(1)

B. O(log n)

C. O(n)

D. O(n * log n)

E. None of the above 



➢ The resulting algorithm has running time O(n log n)

➢ Natural generalization of selection sort :  instead of 
simply scanning the rest of the array to find the 
maximum value, use a smart data structure

➢ Uses additional space O(n) to store the heap

Heapsort: naive



➢ Turn input array A of size n into a heap of size m=n by 
rearranging its elements

➢ After this, extract max at A[0] and swap it with the 
element A[m-1]

➢ Decrement heap size m:= m -1

➢ Restore heap (sift_down)

➢ Continue until heap size m=1

In-place Heapsort: 
all is done inside the input array



How to Heapify an array 
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not a heap H ➔ Lets’ go bottom up and repair 
heap property for all subtrees 
rooted at current node



How to Heapify an array

29

14

9

12

42

7

418

18

1

0

2

3 4 5 6

7 8

29 14 7 9 42 18 4 12 18

0 1 2 3 4 5 6 7 8

not a heap H ➔ Lets’ go bottom up and repair 
heap property for all subtrees 
rooted at current node

➔ If current node is a leaf, then 
it does not need to be repaired

➔ How do we find the first from 
the end node that is not a 
leaf?



How to Heapify an array
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not a heap H ➔ Lets’ go bottom up and repair 
heap property for all subtrees 
rooted at current node

➔ If current node is a leaf, then 
it does not need to be repaired

➔ How do we find the first from 
the end node that is not a 
leaf?

We find the parent of the 
last leaf H[n - 1]: 
parent(i) = ⌊(i -1)/2⌋
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How to Heapify an array
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How to Heapify an array
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How to Heapify an array
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How to Heapify an array
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heap H ➔ We rearranged the elements 
of the input array such that it 
is now a heap

➔ Next, we can use dequeue 
inside the array itself to sort 
it in-place



First - turn Array into a Heap

Heapify (array A of size n)

last ← n - 1

for  i from ⌊(last -1)/2⌋ down to 0:  

sift_down (i )



Group Work

heapify the following array:
10, 85, 15, 70, 20, 60, 30, 50, 65, 40



What is the state of array X after the 
first sift_down in heapify(X)?

10 85 15 70 20 60 30 50 65 40
0 1 2 3 4 5 6 7 8 9

85 10 15 70 20 60 30 50 65 40

0 1 2 3 4 5 6 7 8 9

X

10 85 15 70 65 60 30 50 20 40

0 1 2 3 4 5 6 7 8 9

Converting X into max-heap

C. None of the above

A. 

B. 



In-place Heap Sort

HeapSort (array A of size n)

Heapify (A)

m ← n

repeat (n − 1) times:  

swap A[0] and A[m-1]  

m ← m − 1  

sift_down (heap of size m, 0)

No additional space (in-place)



➢ The running time of Heapify is O(n log n) since 

we call sift_down for O(n) nodes

➢ If a node is a leaf then we do not call sift_down
on it

➢ If a node is close to the leaves, then sifting it 
down does not take log n

➢ We have many such nodes!

➢ Is our estimate of the running time of Heapify too 

pessimistic?

Run-time of Heapify



the height 
j of a heap 
node at 
level i

Definition

If we count levels of the 
heap from top to bottom, 
then the height of a heap 
node at level i is defined 
to be j = h - i, where h is 
the total height of the 
heap

level 0

level 1

level i

level h

When we are repairing the heap, for each node at level i
we need to swap at most j values

The height of nodes at level i



Run-time of Heapify

level # nodes node height

h-h 2h-h h

... ...

h-2 2h-2 2

h-1 ≤ 2h-1 1

h-0 ≤ 2h-0 0

Total work:

, where j represents the height of the 
nodes at each of 0...h tree levels 



This expression evaluates to O(n)

≤ 2h∗2 = O(2h) = O(2log n) = O(n)

The running time of Heapify is O(n)

To convert an arbitrary array into a heap takes 
linear time and no additional space! 



In-place Heap Sort

HeapSort (array A of size n)

Heapify (A)

m ← n

repeat (n − 1) times:  

swap A[0] and A[m-1]  

m ← m − 1  

sift_down (heap of size m, 0)

No additional space (in-place)



What is the running time of an 
improved heapsort?

A. O(1)

B. O(log n)

C. O(n)

D. O(n * log n)

E. None of the above



Group Work

Sort the heapified array using the last step 
of in-place HeapSort

85 70 60 65 40 15 30 50 10 20
0 1 2 3 4 5 6 7 8 9

Max-

heap



Application: Top-k Problem

Input: An array A of size n, an integer  

1 ≤ k ≤ n.

Output: k largest elements of A (top-k).

Can be solved in time: O (n) + O (k log n)


