Many algorithms use Priority Queues

=~ Dijkstra’s algorithm: finding a shortest path in
a graph

= Prim’s algorithm: constructing a minimum
spanning tree of a graph

= Huffman encoding: constructing an optimum
prefix-free encoding of a string

~ Heap sort: sorting a given sequence

Using Heaps for Sorting
Heap Sort

Lecture 23
by Marina Barsky

We can sort using Heaps!

» After array elements are enqueued —

» Produce a sorted array by dequeuing them

Algorithm HeapSort

HeapSortNaive (array A of size n)
create an empty max-heap
for i from O to n-1:

enqueue (Ali])

for i from n-1 downto O:
Ali] ¢ dequeue()

What is the running time of a naive
heap-based sorting algorithm?

A. O(1)
B. O(log n)

C. O(n) @

D. O(n * log n)

E. None of the above

Heapsort: naive

The resulting algorithm has running time O(n log n)

Natural generalization of selection sort : instead of
simply scanning the rest of the array to find the
maximum value, use a smart data structure

Uses additional space O(n) to store the heap

In-place Heapsort:
all is done inside the input array

> Turn input array A of size ninto a heap of size m=n by
rearranging its elements

> After this, extract max at A[0] and swap it with the
element A[m+1]

> Decrement heap size m:= m-1
> Restore heap (sift_down)

> Continue until heap size m=1

How to Heapify an array

not a heap H @ > Lets’ go bottom up and repair
heap property for all subtrees
/ 0 \ rooted at current node

2914 719 4218/ 4 1218

o 1 2 3 4 5 6 [8

How to Heapify an array

not a heap H @

o) a2

\

12
/ 8

2914 719 4218/ 4 1218

0

1

2

@/
)1

3

N

18 4

4

m

5

6

6

-

8

Lets’ go bottom up and repair
heap property for all subtrees
rooted at current node

If current node is a leaf, then
it does not need to be repaired

How do we find the first from
the end node that is not a
leaf?

How to Heapify an array

not a heap H @ > Lets’ go bottom up and repair
heap property for all subtrees
/ 0 \ rooted at current node

@ @ » If current node is a leaf, then
s 1N\ 2\ it does not need to be repaired
@ @ 18 @ > How do we find the first from
5 6 the end node that is not a

/3 4 s
eaf"
@ @ We find the parent of the
/ 8

last leaf H[n - 1]:
parent(i) = |(i -1)/2]

2914 719 4218/ 4 1218

o 1 2 3 4 5 6 [8

How to Heapify an array

not a heap H @

/\

1\

42

@@
/ 8

2914 719 4218/ 4 1218

0

1

2

3

2
w28 4

4

5

5

6

v

->

8

We need to process all
elements starting from
position ~=|[(8-1)/2] = 3 until
position 0 and repair heap
violations by calling
sift_down(/)

How to Heapify an array

not a heap H @ > We need to process all
elements starting from
/ \ position /=|(8-1)/2| = 3 until

position 0 and repair heap
violations by calling

1 \ 2 sift_down(/)
42 @ sift_down(3)
@ 8
7 8

2914 719 4218/ 4 1218

o 1 2 3 4 5 6 [8

How to Heapify an array

nota heap H @

/\

/1\ 2
18 42 @

@ 9 AII these nodes
satisfy heap

property

->

2914 7 /184218 4

12

All the nodes H[3...8] are
NOW repaired

How to Heapify an array

not a heap H @ > the next node we need to fix
is at position 2 of the array

/ \
/1\ 2
18 42 @
5
12(9)
/ 8

2914 7 |18 42|18/ 4 12/ 9

o 1 2 3 4 5 6 [8

sift_down(2)

How to Heapify an array

not a heap H @

/\

/1\ 2
18 42 m
5
12(9)
/ 8

2914|118 18142 7 4 |12/ 9

o 1 2 3 4 5

6

v

->

8

the next node we need to fix
is at position 2 of the array

sift_down(2)

How to Heapify an array

not a heap H @ > the next node we need to fix
is at position 1 of the array

/ \
/1\ 2
18 42 @
5
12(9)
/ 8

2914/18/18/42 /7 |4 |12/ 9

o 1 2 3 4 S5 6 7 8

sift_down(1)

How to Heapify an array

not a heap H @ > the next node we need to fix
is at position 1 of the array

/ \
/1\ 2
18 14 @
5
12(9)
/ 8

2942/1818/14 7 |4 |12/ 9

o 1 2 3 4 5 6 [8

sift_down(1)

How to Heapify an array

nota heap H @

/\

/1\

@ 14
1209

mz

->

7/ 8
2942 18/18/14 7/ 12
0 1 2 3 4 5 7

Finally, we fix the root at
position 0

sift_down(0)

How to Heapify an array

nota heap H @

/\

/1\

@ 14
1209

mz

->

/ 8
42 29 181814 7/ 12
0 1 2 3 4 5 7

Finally, we fix the root at
position 0

sift_down(0)

How to Heapify an array

2

heap H

/\

2
18 14@

42129/18/18'14/ 7 4 12| 9

0

1

2

3

4

5

5

6

v

8

We rearranged the elements
of the input array such that it
iS now a heap

Next, we can use dequeue
inside the array itself to sort
it in-place

First - turn Array into a Heap

Heapify (array A of size n)

last«<—n -1
for i from |(last-1)/2] down to O:
sift_ down (/)

Group Work

heapify the following array:
10, 85, 15, 70, 20, 60, 30, 50, 65, 40

What is the state of array X after the
first sift_down in heapify(X)?

10

85

15

70

20

60

30

50

65

40

0

1

2

3

4 5

6

7

8

9

A.

B.

Converting X into max-heap

85

10

15

70

20

60

30

50

65

40

0

1

2

3 4

10

85

15

70

65

60

30

50

20

40

0

1

2

3 4

C. None of the above

In-place Heap Sort

HeapSort (array A of size n)

Heapify (A)

m & n

repeat (n - 1) times:
swap A[0] and A[m-1]
mé&m-1
sift._ down (heap of size m, 0)

No additional space (in-place)

Run-time of Heapify

~ The running time of Heapify is O(nlog n) since
we call sift_down for O(n) nodes

> If a node is a leaf then we do not call sift down
on it

> If a node is close to the leaves, then sifting it
down does not take log

> We have many such nodes!

~ Is our estimate of the running time of Heapify too
pessimistic?

The height of nodes at level i

el Definition
level 1
If we count levels of the
heap from top to bottom,
® A . then the helg_h_tof a_heap
the height node a.t level /s deﬁne_d
jof a heap tobe j = A -/, where Ais
node at the total height of the
level / level h heap

When we are repairing the heap, for each node at level /
we need to swap at most j values

Run-time of Heapify

level # nodes node height
h-h 2h-h h
h-2 2h-2 2
h-1 < 2hl 1
h-0 < 2h-0 0

Total work:

h h .
Z j* 20 =2h Z [* 5 where jrepresents the height of the

=0 =0 nodes at each of 0.../ tree levels

This expression evaluates to O(n)

h
1
2") jros| < 2m2 = 02 = 0299 = O(n)
=0

The running time of Heapify is O(n)

To convert an arbitrary array into a heap takes
linear time and no additional space!

In-place Heap Sort

HeapSort (array A of size n)

Heapify (A)

m & n

repeat (n - 1) times:
swap A[0] and A[m-1]
mé&m-1
sift._ down (heap of size m, 0)

No additional space (in-place)

What is the running time of an
improved heapsort?

A. O(1)

B. O(log n)

C. O(n) ©
D. O(n * log n)

E. None of the above

Group Work

Sort the heapified array using the last step

Max-
heap

of in-place HeapSort

85

70

60

65

40

15

30

50

10

20

0

1

2

3

4

Application: Top-k Problem

Input: An array A of size n, an integer
1 <k<n.

Output: k largest elements of A (top-k).

Can be solved in time: O(n) + O (klog n)

