Lab 8. Story generator

- You're about to develop a program that can read a story and then write a new story in the same style as the original story
- A new story will be based on a random selection of symbols from the original story

Generating random stories

- Input story - old German saying:

What I spent, I had; what I saved, I lost; what I gave, I have.

- Consider each symbol to be the entire word

Current symbol	Possible next symbols (list)
what	I
I	spent, had, saved, lost, gave, have
spent	I
saved	I
lost	what
gave	I
have	-

We can generate a new story:

- Pick symbol at random: I
- Pick at random any symbol that can follow I: lost
- After lost can be only: what
- Then: I
- Finally: have

I lost what I have

What is the best data structure to store symbol frequencies?

What I spent, I had; what I saved, I lost; what I gave, I have.

Current symbol	Possible next symbols (list)
what	I
I	spent, had, saved, lost, gave, have
spent	I
saved	I
lost	what
gave	I
have	-

We can generate a new story:

- Pick symbol at random: I
- Pick at random any symbol that can follow I: lost
- After lost can be only: what
- Then: I
- Finally: have

I lost what I have

What is the best data structure to store these data?

Current symbol	Possible next symbols
a	$\mathrm{b}: 3, \mathrm{c}: 4, \mathrm{n}: 12$
b	$\mathrm{a}: 33, \mathrm{o}: 21$
c	$\mathrm{a}: 44, \mathrm{r}: 12$
d	$\mathrm{r}: 12, \mathrm{o}: 23$

Lab 8. Implement Hash Map - using Hash Table with separate chaining

- Stores (key, value) pairs
- Collisions are resolved by storing a list
$[(11,5),(21,3),(33,1) \ldots$.

array index	List of (key, val) pairs	
0		
1	$(11,5)$	
2		
3	$(21,3)$	
4		
5		
6		
7		
8		
9		

Lab 8. hash table as a value

- Stores (key, value) pairs, where key is a symbol, and value is another hash table! (list of hash tables for separate chaining)

Key: current symbol	Current symbol	Possible next symbols	Value: another hash map (next symbol, count)
	a	$\mathrm{b}: 3, \mathrm{c}: 4, \mathrm{n}: 12$	
	b	a:33, o:21	
	C	a:44, r: 12	
	d	r: 12, o:23	

Graph ADT Modeling with graphs

Lecture 24
By Marina Barsky

What is a graph?

A graph $G=(V, E)$ is an Abstract Data Type that consists of 2 collections:

- Set of objects (vertices, nodes)

$$
V=\{A, B, C, D, E\}
$$

- Relation on set of objects (edges)

$$
E=\{(A, B),(A, C),(A, E),(B . D),(C, D),(C, E)\}
$$

Running time of Graph algorithms uses two numbers:

- $n=|\mathrm{V}|$
- $m=|E|$

Vertices and edges

- Edge e connects vertices u and v
- Vertices u and v are end points of edge e
- Vertex u and edge e are incident
- Two edges are also called incident, if they are incident to the same vertex
- Vertices u and v are adjacent
- Vertices u and v are neighbors
- This is a vocabulary for undirected graph

The degree of a vertex

- The degree of a vertex is the number of its incident edges.
l.e., the degree of a vertex is the number of its neighbors
- Let's denote the degree of a vertex v by $\operatorname{deg}(v)$
- The degree of a graph is sum of degree of its vertices. The degree of undirected graph with m edges is $2 m$

Example

The degree of v is $6: \operatorname{deg}(v)=6$
The degree of v_{6} is $1: \operatorname{deg}\left(v_{6}\right)=1$

The degree of this graph: $\operatorname{deg}(G)=2 \mathrm{~m}=12$

Directed graphs

Nodes: $\{A, B, C, D\}$

Edges (ordered pairs):
$\{(C, A),(D, A),(B, D),(C, B)\}$

These two graphs are different!

Graphs can model many things

Trivial:

- Mobile networks
- Computer networks
- Social networks

Non-trivial:

- Web pages
- States of the game
-...

Graph: airlines

Graph: airlines

- Is there a direct flight from A to D ?
-With one stop?
- With exactly two stops?

Graph of flights between 5 cities

Facebook graph

Facebook graph

Directed graph: one-way streets

Directed graph: followers

Directed graph: citations

Directed graph: citations

Linked Open Data Diagram

DBpedia: structured cross-domain knowledge

Linked Open Data Diagram

Schizophrenia Protein-Protein Interaction (PPI)

Schizophrenia Protein-Protein Interaction (PPI)

Graph of states: explicit vs Implicit

- A graph is explicit if all its vertices and edges are stored.
- Often we work with an implicit graph which is conceptual or unexplored.

There are only $3^{9}=19,683$ different states in Tic-TacToe. We can store the entire graph and compute the optimal strategy as a path through this graph

The Rubik's Cube has 43 quintillion states. It can be solved without explicitly listing all vertices (states)

Paolo Guarini di Forli, Italy
15th - 16th Century

Modeling with graphs
Solving puzzles

Chess Knight

A chess knight can move in an \mathbf{L} shape in any direction

Chess Knight

A chess knight can move in an L shape in any direction

Guarini's Puzzle

There are four knights on the 3×3 chessboard: the two white knights are at the two upper corners, and the two black knights are at the two bottom corners of the board.

The goal is to switch the knights in the minimum number of moves so that the white knights are at the bottom corners and the black knights are at the upper corners.

Graph: nodes

Each position is a node in a graph

Graph: edges

There is an edge between the nodes if you can go from one node to another by 1 knight move

Graph: edges

Does it help to solve the puzzle?

Unfold the graph!

All the nodes are on a circle

Solution

Do you see it now?

Solution

Move around the circle following legal edges

Solution

Until knights are in desired positions

Group activity Graphs and puzzles

Consider the following puzzle:

- You can move each of the green or red pieces along the lines.
- The goal is to interchange the positions of the colored pieces in the minimum number of moves.

Draw a graph model which would help you to solve this puzzle
What is the minimum number of moves? \qquad

