
Data Structures for 
implementing 

Graph ADT

Lecture 26
by Marina Barsky



Abstract data Type: Graph

Specification
Graph is an Abstract Data Type which models relationships  between 
entities. 

The entities are modeled as vertices, and the connections as edges. 



Abstract data Type: Graph

Supported operations
➔ Vertices() – returns the set of all vertices

➔ Edges() – returns all the edges (not necessarily a set)

➔ AddEdge (v1, v2, [cost]) – adds a new edge between v1 and v2 , 

optionally with cost

➔ AddVertex(v) – adds a new vertex

➔ RemoveEdge(e) – removes edge e

➔ RemoveVertex(v) – removes vertex v with all its incident edges 

➔ AreAdjacent(v1, v2) – returns True if vertices v1and v2 are adjacent

➔ GetIncidentEdges(v) – returns all the incident edges of vertex v

➔ GetNeighbors(v) – returns all adjacent vertices of  v



Representing Graph as Edge Set (Edge List)

The most straightforward mathematical way of storing graphs is to create a set 
of all graph vertices, and a list of all edges in form of tuples:

a f

c d

b e

V = {a,b,c,d,e,f}

E = {(a,b), (a,c), (b,c), (c,d), (d,e), (d,f), (e,f)}

● Edge lists are simple, but if we want to find 

whether the graph contains a particular 

edge, we have to search through the 

entire edge list. 

● If the edges appear in the edge list in no 

particular order, that's a linear search 

through m edges. 

Question: How would you implement an edge list to make searching for a 

particular edge in time O(log m)?



Adjacency Lists and Adjacency Matrices

Graphs are commonly stored as adjacency lists or adjacency matrices.
● In undirected graphs each edge is stored twice.
● Non-simple graphs (with more than one edge between the same vertices) 

use adjacency counts instead of 0/1 in the adjacency matrix.
● Non-simple graphs repeat vertices or use edge counts in the adjacency list.

Adjacency Matrix

Graph

Adjacency List

a f

c d

b e

a b c d e f

a 0 1 1 0 0 0

b 1 0 1 0 0 0

c 1 1 0 1 0 0

d 0 0 1 0 1 1

e 0 0 0 1 0 1

f 0 0 0 1 1 0

a b, c

b a, c

c a, b, d

d c, e, f

e d, f

f d, e



Adjacency Lists vs Adjacency Matrices: space

● For a sparse graph: where m = O(n) – use adjacency lists (linear 
vs. quadratic storage)

● For a dense graph: where m = O(n2) – use  adjacency matrices 
(save on links)

Adjacency Matrix

Graph

Adjacency List

a f

c d

b e

a b c d e f

a 0 1 1 0 0 0

b 1 0 1 0 0 0

c 1 1 0 1 0 0

d 0 0 1 0 1 1

e 0 0 0 1 0 1

f 0 0 0 1 1 0

a b, c

b a, c

c a, b, d

d c, e, f

e d, f

f d, e



Efficiency of operations

The data structure used to store a graph affects the efficiency of 
algorithms running on it.

Operation Winner

areAdjacent(x,y)

degree(v)

addEdge (ex,y)

removeEdge (ex,y)

n = |V|,  m = |E|



Which data structure is 
most efficient for the 
following 3 operations?

Adjacency Matrix

Graph

Adjacency List

a f

c d

b e

a b c d e f

a 0 1 1 0 0 0

b 1 0 1 0 0 0

c 1 1 0 1 0 0

d 0 0 1 0 1 1

e 0 0 0 1 0 1

f 0 0 0 1 1 0

a b, c

b a, c

c a, b, d

d c, e, f

e d, f

f d, e

Operation

1 areAdjacent(x,y)

2 degree(x)

3 Add/remove Edge (ex,y)

A. (1) matrix (2) matrix (3) matrix
B. (1) matrix (2) list (3) list
C. (1) list (2) list (3) list
D. (1) matrix (2) list (3) matrix
E. None of the above



Efficiency of operations

The data structure used to store a graph affects the efficiency of 
algorithms running on it.

Operation Winner

areAdjacent(x,y) Adj. matrix O(1) vs. O(degree(x))

degree(x) Adj. list O(degree(x)) vs. O(n)

addEdge (ex,y) Adj. matrix O(1) vs. O(degree(x))

removeEdge (ex,y) Adj. matrix O(1) vs. O(degree(x))

n = |V|,  m = |E|

Most graph implementations use adjacency lists because most graphs are large 
and sparse → quadratic storage space is infeasible


