Data Structures for implementing Graph ADT

Lecture 26 by Marina Barsky

Abstract data Type: Graph

Specification

Graph is an Abstract Data Type which models relationships between entities.

The entities are modeled as vertices, and the connections as edges.

Abstract data Type: Graph

Supported operations

- → Vertices() returns the set of all vertices
- → Edges() returns all the edges (not necessarily a set)
- → AddEdge (v₁, v₂, [cost]) adds a new edge between v₁ and v₂, optionally with cost
- → AddVertex(v) adds a new vertex
- → RemoveEdge(e) removes edge e
- \rightarrow RemoveVertex(ν) removes vertex v with all its incident edges
- \rightarrow AreAdjacent(v_1 , v_2) returns *True* if vertices v_1 and v_2 are adjacent
- → GetIncidentEdges(v) returns all the incident edges of vertex v
- → GetNeighbors(v) returns all adjacent vertices of v

Representing Graph as Edge Set (Edge List)

The most straightforward mathematical way of storing graphs is to create a set of all graph vertices, and a list of all edges in form of tuples:

$$V = \{a,b,c,d,e,f\}$$

E = {(a,b), (a,c), (b,c), (c,d), (d,e), (d,f), (e,f)}

- Edge lists are simple, but if we want to find whether the graph contains a particular edge, we have to search through the entire edge list.
- If the edges appear in the edge list in no particular order, that's a linear search through *m* edges.

Question: How would you implement an edge list to make searching for a particular edge in time O(log m)?

Adjacency Lists and Adjacency Matrices

Graphs are commonly stored as *adjacency lists* or *adjacency matrices*.

- In undirected graphs each edge is stored twice.
- Non-simple graphs (with more than one edge between the same vertices) use adjacency *counts* instead of 0/1 in the adjacency matrix.
- Non-simple graphs repeat vertices or use edge counts in the adjacency list.

Graph

а	b, c
b	a, c
с	a, b, d
d	c, e, f
е	d, f
f	d <i>,</i> e

	а	b	С	d	е	f
а	0	1	1	0	0	0
b	1	0	1	0	0	0
С	1	1	0	1	0	0
d	0	0	1	0	1	1
е	0	0	0	1	0	1
f	0	0	0	1	1	0

Adjacency List

Adjacency Matrix

Adjacency Lists vs Adjacency Matrices: space

- For a sparse graph: where m = O(n) use adjacency lists (linear vs. quadratic storage)
- For a dense graph: where m = O(n²) use *adjacency matrices* (save on links)

Graph

_	
а	b, c
b	a, c
с	a, b, d
d	c, e, f
е	d, f
f	d <i>,</i> e

	а	b	С	d	е	f
а	0	1	1	0	0	0
b	1	0	1	0	0	0
С	1	1	0	1	0	0
d	0	0	1	0	1	1
е	0	0	0	1	0	1
f	0	0	0	1	1	0

Adjacency List

Adjacency Matrix

Efficiency of operations

The data structure used to store a graph affects the efficiency of algorithms running on it.

Operation	Winner
areAdjacent(x,y)	
degree(v)	
addEdge (e _{x,y})	
removeEdge (e _{x,y})	

n = |V|, m = |E|

Which data structure is most efficient for the following 3 operations?

а	b, c
b	a, c
с	a, b, d
d	c, e, f
е	d, f
f	d <i>,</i> e

	а	b	С	d	е	f
а	0	1	1	0	0	0
b	1	0	1	0	0	0
с	1	1	0	1	0	0
d	0	0	1	0	1	1
е	0	0	0	1	0	1
f	0	0	0	1	1	0

Adjacency List

Adjacency Matrix

	Operation
1	areAdjacent(x,y)
2	degree(x)
3	Add/remove Edge (e _{x,y})

۹.	(1) matrix	(2) matrix
3.	(1) matrix	(2) list

- C. (1) list (2) list
- D. (1) matrix (2) list
- E. None of the above

- (3) matrix
- (3) list
- (3) list
- (3) matrix

Efficiency of operations

The data structure used to store a graph affects the efficiency of algorithms running on it.

Operation	Winner
areAdjacent(x,y)	Adj. matrix O(1) vs. O(degree(x))
degree(x)	Adj. list O(degree(x)) vs. O(n)
addEdge (e _{x,y})	Adj. matrix O(1) vs. O(degree(x))
removeEdge (e _{x,y})	Adj. matrix O(1) vs. O(degree(x))

n = |V|, m = |E|

Most graph implementations use adjacency lists because most graphs are large and sparse \rightarrow quadratic storage space is infeasible