Data Structures for implementing Graph ADT

Lecture 26
by Marina Barsky

Abstract data Type: Graph

Specification

Graph is an Abstract Data Type which models relationships between entities.
The entities are modeled as vertices, and the connections as edges.

Abstract data Type: Graph

Supported operations

\rightarrow Vertices() - returns the set of all vertices
\rightarrow Edges() - returns all the edges (not necessarily a set)
\rightarrow AddEdge (v_{1}, v_{2}, [cost]) - adds a new edge between v_{1} and v_{2}, optionally with cost
\rightarrow AddVertex(v) - adds a new vertex
\rightarrow RemoveEdge(e) - removes edge e
\rightarrow RemoveVertex (v) - removes vertex v with all its incident edges
\rightarrow AreAdjacent $\left(v_{1}, v_{2}\right)$ - returns True if vertices v_{1} and v_{2} are adjacent
\rightarrow GetIncidentEdges(v) - returns all the incident edges of vertex v
\rightarrow GetNeighbors(v) - returns all adjacent vertices of v

Representing Graph as Edge Set (Edge List)

The most straightforward mathematical way of storing graphs is to create a set of all graph vertices, and a list of all edges in form of tuples:

$$
\begin{aligned}
& V=\{a, b, c, d, e, f\} \\
& E=\{(a, b),(a, c),(b, c),(c, d),(d, e),(d, f),(e, f)\}
\end{aligned}
$$

- Edge lists are simple, but if we want to find whether the graph contains a particular edge, we have to search through the entire edge list.
- If the edges appear in the edge list in no particular order, that's a linear search through m edges.

Question: How would you implement an edge list to make searching for a particular edge in time $\mathrm{O}(\log \mathrm{m})$?

Adjacency Lists and Adjacency Matrices

Graphs are commonly stored as adjacency lists or adjacency matrices.

- In undirected graphs each edge is stored twice.
- Non-simple graphs (with more than one edge between the same vertices) use adjacency counts instead of $0 / 1$ in the adjacency matrix.
- Non-simple graphs repeat vertices or use edge counts in the adjacency list.

Graph

\mathbf{a}	b, c
\mathbf{b}	a, c
\mathbf{c}	$\mathrm{a}, \mathrm{b}, \mathrm{d}$
\mathbf{d}	$\mathrm{c}, \mathrm{e}, \mathrm{f}$
\mathbf{e}	d, f
\mathbf{f}	d, e

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}
\mathbf{a}	0	1	1	0	0	0
\mathbf{b}	1	0	1	0	0	0
\mathbf{c}	1	1	0	1	0	0
\mathbf{d}	0	0	1	0	1	1
\mathbf{e}	0	0	0	1	0	1
\mathbf{f}	0	0	0	1	1	0

Adjacency Matrix

Adjacency Lists vs Adjacency Matrices: space

- For a sparse graph: where $m=O(n)$ - use adjacency lists (linear vs. quadratic storage)
- For a dense graph: where $m=O\left(n^{2}\right)$-use adjacency matrices (save on links)

Graph

\mathbf{a}	b, c
\mathbf{b}	a, c
\mathbf{c}	a, b, d
\mathbf{d}	c, e, f
\mathbf{e}	d, f
\mathbf{f}	d, e

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}
\mathbf{a}	0	1	1	0	0	0
\mathbf{b}	1	0	1	0	0	0
\mathbf{c}	1	1	0	1	0	0
\mathbf{d}	0	0	1	0	1	1
\mathbf{e}	0	0	0	1	0	1
\mathbf{f}	0	0	0	1	1	0

Adjacency Matrix

Efficiency of operations

The data structure used to store a graph affects the efficiency of algorithms running on it.

Operation	Winner
areAdjacent(x, y)	
degree(v)	
addEdge $\left(e_{x, y}\right)$	
removeEdge $\left(e_{x, y}\right)$	

$$
n=|\mathrm{V}|, \quad m=|\mathrm{E}|
$$

Graph

Which data structure is most efficient for the following 3 operations?

	Operation
1	areAdjacent (x, y)
2	degree (x)
3	Add/remove Edge $\left(e_{x, y}\right)$

\mathbf{a}	b, c
\mathbf{b}	a, c
\mathbf{c}	a, b, d
\mathbf{d}	c, e, f
\mathbf{e}	d, f
\mathbf{f}	d, e

Adjacency List

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}
\mathbf{a}	0	1	1	0	0	0
\mathbf{b}	1	0	1	0	0	0
\mathbf{c}	1	1	0	1	0	0
\mathbf{d}	0	0	1	0	1	1
\mathbf{e}	0	0	0	1	0	1
\mathbf{f}	0	0	0	1	1	0

Adjacency Matrix
A. (1) matrix (2) matrix (3) matrix
B. (1) matrix (2) list
C. (1) list (2) list
D. (1) matrix (2) list
E. None of the above
(3) list
(3) list
(3) matrix

Efficiency of operations

The data structure used to store a graph affects the efficiency of algorithms running on it.

Operation	Winner
areAdjacent(x, y)	Adj. matrix $O(1)$ vs. O(degree(x))
degree(x)	Adj. list O(degree(x)) vs. O(n)
addEdge $\left(e_{x, y}\right)$	Adj. matrix $O(1)$ vs. O(degree(x))
removeEdge $\left(e_{x, y}\right)$	Adj. matrix $O(1)$ vs. O(degree(x))

$$
n=|\mathrm{V}|, \quad m=|\mathrm{E}|
$$

Most graph implementations use adjacency lists because most graphs are large and sparse \rightarrow quadratic storage space is infeasible

