
Graph Applications:
Minimum-cost Spanning

Trees

Lecture 28
by Marina Barsky

• Two vertices are connected, if there is a path between

them

Recall: Connectivity in undirected graphs

v
1

v
2

v
3

v
4

v
5

v
6

v1 and v6 are connected.

• A graph is connected, if any two of its nodes are

connected. In other words, there is a path

between any pair of nodes

Recall: Connected graph

a f

c d

b e

gh

a f

c d

b e

gh

This graph is connected. This graph is not connected.

How to find if the graph is
connected

1. How to find out whether an undirected Graph is
connected?

• Hint: traversals

• What is the running time of these algorithms?

Minimum spanning trees:
Motivation

• Connect all the
computers in a new
office building using
the least amount of
cable

• Road repair: repair
only min-cost roads
such that all the cities
are still connected

• Airline: downsize
operations but preserve
connectivity

Definitions
• A Spanning Tree of a graph G, is a subgraph of G

which is a tree and contains all vertices of G

• A Minimum Spanning Tree (MST) of a

weighted graph G is a spanning tree with the

smallest total weight

Input: undirected graph G=(V, E) and the weight we for each edge

Output: minimum-cost tree T ∈ E that spans all the vertices V

Problem: compute MST of Graph G

a b

c d

1

2
3

4

5

Tree means a subgraph that:

❑ has no cycles

❑ has exactly n-1 edges

❑ is connected

a b

c d

1

2
3

4

5

a b

c d

1

2
3

4

5

Simplifying assumptions:

• G is undirected and simple (that

is, it has no self-loops and no

parallel edges)

• Input graph G is connected

Which of the following subgraphs
(in red) are Spanning trees

• A

• B

• C

• More than one of the
above

• None of the above

a b

c d

1

2
3

4

5

a b

c d

1

2
3

4

5

a b

c d

1

2
3

4

5

B

A

C

Input: undirected graph G=(V, E) and the weight we for each edge

Output: minimum-cost tree T ∈ E that spans all the vertices V

Problem: compute MST of Graph G

a b

c d

1

2
3

4

5

Tree means a subgraph that:

❑ has no cycles

❑ has exactly n-1 edges

❑ is connected

a b

c d

1

2
3

4

5

a b

c d

1

2
3

4

5

Simplifying assumptions:

• G is undirected and simple (that

is, it has no self-loops and no

parallel edges)

• Input graph G is connected

Not

spanning,

not tree

Spanning,

not

connected

Spanning

tree!

MST Algorithm by Prim

Grows a tree starting from a single
(arbitrarily selected) vertex.

• Start from an arbitrary vertex

• Span another vertex by choosing
the edge with the min cost
(greedy move)

• Now have a tree of 2 vertices

• Check all edges out of this tree and
choose the one with min-cost …

a b

c d

1

4
3

5

2

a b

c d

1

4
3

5

a b

c d

1

43

5

2

2

Algorithm Prim_MST (graph G(V,E))

initialize tree T: = ∅ # set of tree edges

X: = {vertex s} # s ∈ V, chosen arbitrarily

X contains vertices spanned by the tree-so-far

while |X|!=|V|:

let e=(u,v) be the cheapest edge of G with u ∈ X and v ∉ X

add e to T

add v to X

that increases the number of spanned vertices

Wy do we need

edges only?

Which of the following sets of tree edges
can be produced by the Prim algorithm?

A. (AB), (BG), (GC), (BC), (GF), (CD), (FE)

B. (GB), (GC), (AB), (GF), (CD), (DE)

C. (ED), (DC), (CG), (GB), (BA), (GF)

D. More than one of the above

E. None of the above

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

MST cost: 3 + 1 + 2 + 3 + 4 + 4 = 17

Prim’s Algorithm

• Prim always finds a minimum-cost spanning tree
for any connected graph (even if the weights are
negative)!

• How can we argue that Prim’s algorithm is
optimal?

• Why is it always a good idea to take the cheapest
edge from the existing tree-so-far?

Cuts
• A cut is a partition (A, B) of G into 2 non-empty subsets

(proper subsets)

• How many different cuts can be in a G with n vertices? (n,
n2, 2n)?

A B

Edges crossing

cut (A,B)

2n - 2

Crossing Edges Lemma
If there are (at least) two crossing edges for a cut (A,B) in an
undirected connected graph, then these edges must be a
part of some cycle.

Proof

If there is a path from u to v
from to two different partitions
that includes the first crossing
edge e, then the second crossing
edge f offers an alternative path
from u to v, thus closing the
cycle on vertex v.

u v

e

f

Cut Crossing Theorem

• Let G be a weighted connected graph, and let (A, B) be
some cut of G.

• If e is the cheapest edge crossing cut (A, B), then e must be
a part of some MST

e must be
part of some
MST

What we are proving

If we have an edge in a graph and you can find just a single
cut for which this edge has the min cost among all edges
crossing this cut, then this edge must belong to the MST (or
one of MSTs in case when the weights are not unique)

1

a b

c d

23

4

1

a b

c d

23

4

1

a b

c d

23

4

1

a b

c d

23

4

1

Cut 1

Edge 1 must

be in MST

Cut 2

Edge 3 must

be in MST

Cut 3

Edge 2 must

be in MST

Cut 4

Edge 1 must

be in MST

Note that edge 4 is never min of all crossing edges, no matter how we

cut – so edge 4 is not in MST

Exchange argument!

• Any nontree edge must have weight
that is ≥ every edge in the cycle
created by that edge and a minimum
spanning tree.

• Suppose edge e has weight 32 and
edge f in the same cycle has weight
33. Edge f is a part of MST (shown
with bold edges), and edge e is not.

• But then we could replace f by e and
get a spanning tree with lower total
weight, which would contradict the
fact that we started with a minimum
spanning tree.

Prim: cut

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set V-X of

remaining vertices

Set X of vertices

already in MST

Algorithm Prim_MST (graph G(V,E))

initialize tree T: = ∅ # set of tree edges

X: = {vertex s} # s ∈ V, chosen arbitrarily

X contains vertices spanned by the tree-so-far

Min-PQ: = ∅ # set of all edges out of X prioritized by cost

current:= vertex s

while |X|!=|V|:

for each e in neighbors(current):

Min-PQ.enqueue(e)

Select e =(u,v) as Min-PQ.dequeue()

if u ∈ X and v ∉ X:

add e to T

add v to X

current:=v

What data structure to use to check this quickly?

Algorithm Prim_MST (graph G(V,E))

initialize tree T: = ∅

X: = {vertex s}

X contains vertices spanned by the tree-so-far

Min-PQ: = ∅

current:= vertex s

while |X|!=|V|:

for each e in neighbors(current):

Min-PQ.enqueue(e)

Select e =(u,v) as Min-PQ.dequeue()

if u ∈ X and v ∉ X:

add e to T

add v to X

current:=v

O(n) No more than O(m)

edges in total, O(log m)

for dequeue

O(1)

Total running time is O(m log m)

Prim: running time

Algorithm by Kruskal

Sort all edges by weight (from smaller
to larger – ascending)

Add the next smallest edge to the
spanning tree, but only if adding it does
not create a cycle

Sorted edges:

(a,b)

(a,c)

(a,d)

(b,d)

(c,d)

a b

c d

1

4
3

5

2

a b

c d

1

4
3

5

a b

c d

1

43

5

2

2

Algorithm Kruskal_MST (graph G(V,E))

Esorted := edges of G sorted by weights

T : = ∅ # set of spanning tree edges

for i from 1 to m:

if T U {Esorted[i]} has no cycles

add Esorted[i] to T

return T

Which sequence represents the order in which edges
are added to MST by the Kruskal algorithm?

A. (BG), (GC), (BA), (FG), (ED), (FE)

B. (BG), (BC), (BA), (CG), (ED), (FE)

C. (BG), (GC), (GF), (FE), (ED), (CE)

D. More than one of the above

E. None of the above

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Note that at this point T is not even a spanning tree

(not connected)

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

MST cost: 1 + 2 + 3 + 3 + 4 + 4 = 17

Repeatedly add a minimum-cost edge

that does not create a cycle

Algorithm Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅ # collects edges of the future MST

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

return T

Kruskal algorithm

Stop when

n-1 edges have been selected

Algorithm Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅ # collects edges of the future MST

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

if |T| = |V| - 1: # we can stop once we have a tree

break

return T

Kruskal algorithm

Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

if |T| = |V| - 1:

break

return T

Line 1: sorting m edges by weight.
O(m log m). This is the same as O(m
log n) Why?

Line 3: outer for loop. O(m). We
check all m edges in the worst case.
Line 4: need to find if edge E’[i]=
(u,v) creates a cycle.
Find out if there is already a path
from u to v in T by any graph
traversal (DFS or BFS). DFS of T with
n vertices and n-1 edges is O(n + n)
= O(n).

1

2

3

4

5

6

7

8

Running time

Thus, total time of the for loop is O(m)*O(n) = O(mn)

Kruskal MST runs in time O(m log n) + O(mn) = O (mn)

Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

if |T| = |V| - 1:

break

return T

1

2

3

4

5

6

7

8

Running time

Kruskal MST runs in time O (mn)

Can we do better?

Bottleneck:

detecting a

cycle

Kruskal as union of sets
We can look at Kruskal from a Set point of view

• First we have n sets: each vertex i is in its own set Si – we
need to be able to MAKE-SET for a single element

• Next we combine two sets of vertices Si and Sj into one set:
we perform UNION (Si and Sj), adding an edge (u,v) such
that u ∈ Si and v ∈ Sj

• However we do the union only if Si ≠ Sj. In other words, we
need to know if u and v are already in the same set, in the
same connected component, we need to FIND out set
names for u and for v and compare them for equality

Note that all the sets are disjoint: each node belongs to a
single set during the execution of the algorithm

Kruskal as union of sets

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set A

Set B

Set F

Set C

Set G Set D

Set E

Set B = UNION (B, G)

Kruskal as union of sets

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set A

Set B

Set F

Set C

Set D

Set E

Set B = UNION (B, C)

Kruskal as union of sets

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set A

Set B

Set F

Set D

Set E

Set B = UNION (B, A)

Kruskal as union of sets

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set B

Set F

Set D

Set E

Set B = UNION (B, F)

Kruskal as union of sets

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set B

Set D

Set E

Set E = UNION (D, E)

Kruskal as union of sets

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set B

Set E

Set E = UNION (B, E)

Kruskal as union of sets

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set E

Set spanning all vertices of G with selected edges:

MST of G

New ADT: UNION-FIND
(= Disjoint Set ADT)

UNION-FIND is an Abstract Data Type that supports the
following operations:

• MAKESET(x): Creates a new set X containing a single
element x.

• UNION(X, Y): Creates a new set containing the elements of
sets X and Y in their union and deletes the previous sets X
and Y.

• FIND(x): Returns the name of the set to which element x
belongs.

Read about an efficient implementation of UNION-FIND in more

detailed slides or in this textbook chapter

Union-Find.pdf
UNION-FIND-TEXTBOOK.pdf

Kruskal running time with UNION-FIND

Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to n:

MAKE-SET (node i)

for each edge (u,v) in E’:

if FIND(u) ≠ FIND(v):

T: = T U (u,v)

UNION(u, v)

if |T| = |V| - 1:

break

return T

Line 1: sorting m edges by weight. O(m log n).

Line 3: Making an array of size n: O(n).

Line 5: O(m) edges in the worst case.
For each edge: perform FIND: O(log n) and

sometimes UNION: in time O(1)

1

2

3

4

5

6

7

8

9
Thus, total time of the for loop is
O(m log n)

Kruskal MST with UNION-FIND runs in
time O(m log n) + O(n) + O(m log n)
= O (m log n)

Both MST algorithms are greedy

Algorithm MST (graph G(V,E))

T: = ∅ # collects edges of the future MST

while |T| ≤ |V| - 1: # needs to collect n-1 edges

select next edge e from E # some greedy move

T: = T U e

return T

All the algorithms follow some greedy strategy.

