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• Two vertices are connected, if there is a path between 

them

Recall: Connectivity in undirected graphs
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• A graph is connected, if any two of its nodes are 

connected. In other words, there is a path 

between any pair of nodes

Recall: Connected graph
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This graph is connected. This graph is not connected.



How to find if the graph is 
connected

1. How to find out whether an undirected Graph is 
connected?

• Hint: traversals

• What is the running time of these algorithms?



Minimum spanning trees: 
Motivation

• Connect all the 
computers in a new 
office building using 
the least amount of 
cable

• Road repair: repair 
only min-cost roads 
such that all the cities 
are still connected

• Airline: downsize
operations but preserve 
connectivity



Definitions
• A Spanning Tree of a graph G, is a subgraph of G 

which is a tree and contains all vertices of G

• A Minimum Spanning Tree (MST) of a 

weighted graph G is a spanning tree with the 

smallest total weight



Input: undirected graph G=(V, E) and the weight we for each edge

Output: minimum-cost tree T ∈ E that spans all the vertices V

Problem: compute MST of Graph G

a b

c d

1

2
3

4

5

Tree means a subgraph that:

❑ has no cycles

❑ has exactly n-1 edges

❑ is connected
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Simplifying assumptions:

• G is undirected and simple (that 

is, it has no self-loops and no 

parallel edges)

• Input graph G is connected



Which of the following subgraphs 
(in red) are Spanning trees 

• A

• B

• C

• More than one of the 
above

• None of the above
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Input: undirected graph G=(V, E) and the weight we for each edge

Output: minimum-cost tree T ∈ E that spans all the vertices V

Problem: compute MST of Graph G
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Tree means a subgraph that:

❑ has no cycles

❑ has exactly n-1 edges

❑ is connected
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Simplifying assumptions:

• G is undirected and simple (that 

is, it has no self-loops and no 

parallel edges)

• Input graph G is connected

Not 

spanning, 

not tree

Spanning, 

not 

connected

Spanning 

tree!



MST Algorithm by Prim

Grows a tree starting from a single 
(arbitrarily selected) vertex.

• Start from an arbitrary vertex

• Span another vertex by choosing 
the edge with the min cost 
(greedy move)

• Now have a tree of 2 vertices

• Check all edges out of this tree and 
choose the one with min-cost …
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Algorithm Prim_MST (graph G(V,E))

initialize tree T: = ∅ # set of tree edges

X: = {vertex s} # s ∈ V, chosen arbitrarily

# X contains vertices spanned by the tree-so-far

while |X|!=|V|:

let e=(u,v) be the cheapest edge of G with u ∈ X and v ∉  X

add e to T

add v to X 

# that increases the number of spanned vertices

Wy do we need 

edges only?



Which of the following sets of tree edges 
can be produced by the Prim algorithm?

A. (AB), (BG), (GC), (BC), (GF), (CD), (FE)

B. (GB), (GC), (AB), (GF), (CD), (DE)

C. (ED), (DC), (CG), (GB), (BA), (GF)

D. More than one of the above

E. None of the above
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Prim: illustration
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Prim: illustration
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MST cost: 3 + 1 + 2 + 3 + 4 + 4 = 17



Prim’s Algorithm

• Prim always finds a minimum-cost spanning tree 
for any connected graph (even if the weights are 
negative)!

• How can we argue that Prim’s algorithm is 
optimal?

• Why is it always a good idea to take the cheapest 
edge from the existing tree-so-far?



Cuts
• A cut is a partition (A, B) of G into 2 non-empty subsets 

(proper subsets)

• How many different cuts can be in a G with n vertices? (n, 
n2, 2n)?
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Edges crossing 

cut (A,B)

2n - 2



Crossing Edges Lemma
If there are (at least) two crossing edges for a cut (A,B) in an 
undirected connected graph, then these edges must be a 
part of some cycle.

Proof

If there is a path from u to v 
from to two different partitions 
that includes the first crossing 
edge e, then the second crossing 
edge f offers an alternative path 
from u to v, thus closing the 
cycle on vertex v. 
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Cut Crossing Theorem

• Let G be a weighted connected graph, and let (A, B) be 
some cut of G.

• If e is the cheapest edge crossing cut (A, B), then e must be 
a part of some MST

e must be 
part of some 
MST



What we are proving

If we have an edge in a graph and you can find just a single 
cut for which this edge has the min cost among all edges 
crossing this cut, then this edge must belong to the MST (or 
one of MSTs in case when the weights are not unique)
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Edge 1 must 

be in MST
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Note that edge 4 is never min of all crossing edges, no matter how we 

cut – so edge 4 is not in MST



Exchange argument!

• Any nontree edge must have weight 
that is ≥ every edge in the cycle 
created by that edge and a minimum 
spanning tree. 

• Suppose edge e has weight 32 and 
edge f in the same cycle has weight 
33. Edge f is a part of MST (shown 
with bold edges), and edge e is not.

• But then we could replace f by e and 
get a spanning tree with lower total 
weight, which would contradict the 
fact that we started with a minimum 
spanning tree.



Prim: cut
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Set V-X of 

remaining vertices

Set X of vertices 

already in MST



Algorithm Prim_MST (graph G(V,E))

initialize tree T: = ∅ # set of tree edges

X: = {vertex s} # s ∈ V, chosen arbitrarily

# X contains vertices spanned by the tree-so-far

Min-PQ: = ∅ # set of all edges out of X prioritized by cost

current:= vertex s

while |X|!=|V|: 

for each e in neighbors(current):

Min-PQ.enqueue(e)

Select e =(u,v) as Min-PQ.dequeue()

if u ∈ X and v ∉  X:

add e to T

add v to X 

current:=v

What data structure to use to check this quickly?



Algorithm Prim_MST (graph G(V,E))

initialize tree T: = ∅ 

X: = {vertex s} 

# X contains vertices spanned by the tree-so-far

Min-PQ: = ∅

current:= vertex s

while |X|!=|V|: 

for each e in neighbors(current):

Min-PQ.enqueue(e)

Select e =(u,v) as Min-PQ.dequeue()

if u ∈ X and v ∉  X:

add e to T

add v to X 

current:=v

O(n) No more than O(m) 

edges in total, O(log m) 

for dequeue

O(1)

Total running time is O(m log m)

Prim: running time



Algorithm by Kruskal

Sort all edges by weight (from smaller 
to larger – ascending)

Add the next smallest edge to the 
spanning tree, but only if adding it does 
not create a cycle

Sorted edges:

(a,b) 

(a,c)
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Algorithm Kruskal_MST (graph G(V,E))

Esorted := edges of G sorted by weights

T : = ∅ # set of spanning tree edges

for i from 1 to m:

if T U {Esorted[i]} has no cycles

add Esorted[i] to T

return T



Which sequence represents the order in which edges 
are added to MST by the Kruskal algorithm?

A. (BG), (GC), (BA), (FG), (ED), (FE)

B. (BG), (BC), (BA), (CG), (ED), (FE)

C. (BG), (GC), (GF), (FE), (ED), (CE)

D. More than one of the above

E. None of the above
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Kruskal illustration
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Kruskal illustration
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Note that at this point T is not even a spanning tree 

(not connected)



Kruskal illustration
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MST cost: 1 + 2 + 3 + 3 + 4 + 4 = 17



Repeatedly add a minimum-cost edge 

that does not create a cycle

Algorithm Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅ # collects edges of the future MST 

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

return T

Kruskal algorithm



Stop when 

n-1 edges have been selected

Algorithm Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅ # collects edges of the future MST 

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

if |T| = |V| - 1: # we can stop once we have a tree

break

return T

Kruskal algorithm



Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

if |T| = |V| - 1:

break

return T

Line 1: sorting m edges by weight. 
O(m log m). This is the same as O(m 
log n) Why?

Line 3: outer for loop. O(m). We 
check all m edges in the worst case.
Line 4: need to find if edge E’[i]= 
(u,v) creates a cycle.
Find out if there is already a path 
from u  to v in T by any graph 
traversal (DFS or BFS). DFS of T with 
n vertices and n-1 edges is O(n + n ) 
= O(n).
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Running time

Thus, total time of the for loop is O(m)*O(n) =  O(mn)   

Kruskal MST runs in time O(m log n) + O(mn) = O (mn)



Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

if |T| = |V| - 1:

break

return T
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Running time

Kruskal MST runs in time O (mn)

Can we do better?

Bottleneck: 

detecting a 

cycle



Kruskal as union of sets
We can look at Kruskal from a Set point of view

• First we have n sets: each vertex i is in its own set Si – we 
need to be able to MAKE-SET for a single element

• Next we combine two sets of vertices Si and Sj into one set: 
we perform UNION (Si and Sj), adding an edge (u,v) such 
that u ∈ Si and v ∈ Sj

• However we do the union only if Si ≠ Sj. In other words, we 
need to know if u and v are already in the same set, in the 
same connected component, we need to FIND out set 
names for u and for v and compare them for equality

Note that all the sets are disjoint: each node belongs to a 
single set during the execution of the algorithm



Kruskal as union of sets
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Set A

Set B

Set F

Set C

Set G Set D

Set E

Set B = UNION (B, G)



Kruskal as union of sets
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Set A

Set B

Set F

Set C

Set D

Set E

Set B = UNION (B, C)



Kruskal as union of sets
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Set A

Set B

Set F

Set D

Set E

Set B = UNION (B, A)



Kruskal as union of sets
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Set B

Set F

Set D

Set E

Set B = UNION (B, F)



Kruskal as union of sets
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Set B

Set D

Set E

Set E = UNION (D, E)



Kruskal as union of sets
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Set B

Set E

Set E = UNION (B, E)



Kruskal as union of sets
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Set E

Set spanning all vertices of G with selected edges:

MST of G



New ADT: UNION-FIND 
(= Disjoint Set ADT)

UNION-FIND is an Abstract Data Type that supports the 
following operations:

• MAKESET(x): Creates a new set X containing a single 
element x.

• UNION(X, Y): Creates a new set containing the elements of 
sets X and Y in their union and deletes the previous sets X 
and Y.

• FIND(x): Returns the name of the set to which element x 
belongs.

Read about an efficient implementation of UNION-FIND in more 

detailed slides or in this textbook chapter

Union-Find.pdf
UNION-FIND-TEXTBOOK.pdf


Kruskal running time with UNION-FIND

Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for  i from 1 to n:

MAKE-SET (node i)

for each edge (u,v) in E’:

if FIND(u) ≠ FIND(v):

T: = T U (u,v)

UNION(u, v)

if |T| = |V| - 1:

break

return T

Line 1: sorting m edges by weight. O(m log n). 

Line 3: Making an array of size n: O(n). 

Line 5: O(m) edges in the worst case. 
For each edge: perform FIND: O(log n) and 

sometimes  UNION: in time O(1)

1

2

3

4

5

6

7

8

9
Thus, total time of the for loop is 
O(m log n)

Kruskal MST with UNION-FIND runs in 
time O(m log n) + O(n) + O(m log n) 
= O (m log n)



Both MST algorithms are greedy

Algorithm MST (graph G(V,E))

T: = ∅ # collects edges of the future MST

while |T| ≤ |V| - 1: # needs to collect n-1 edges

select next edge e from E  # some greedy move

T: = T U e

return T

All the algorithms follow some greedy strategy.  


