
Object-Oriented approach to
code reuse.

Composition and Inheritance
Lecture 4

by Marina Barsky

Why use objects?

• Organization
• Easier to change: the code is compartmentalized

• Encapsulation
• Can be treated as a blackbox without knowing details

• Avoiding Repetition
• Code reuse

Reusing objects

• We can build complex programs by reusing existing
objects

• We can reuse code in two ways:
• Composition

• Inheritance

Reusing objects:
composition

Objects as building blocks

• Instance variables can be of any type: they can also be of a
new custom type (class)

• This way we can construct complex objects which contain
simpler objects inside them

• The method of constructing a program by incorporating
smaller objects inside a larger one is called composition

• This is the most useful and widely used approach in Object-
Oriented Programming

Composing with objects

• While combining elementary objects we ensure that we expose only
important properties and capabilities of these objects (contract, public
interface)

• We can divide work among many programmers: each programmer can
concentrate on correct implementation of each small piece

Car

model: String
engine: Engine
door: Door
wheels: Wheel []

move()

EngineComposed
from:

Door

Wheels

People who build
engines do not have
to know how to
make wheels

Example: hospital

Hospital

name: String
patients: Patient []

cureAll ()

Patient

name: String
age: int
malady: String
isCured: boolean

cure ()

Contains

public class Hospital {
private String name;
private Patient[] patients;
int numPatients;
int capacity;

public Hospital(String name, int capacity) {
this.name = name;
patients = new Patient[capacity];
this.capacity = capacity;

}

public void addPatient(Patient p) {
if (this.numPatients < this.capacity)

this.patients[numPatients++] = p;
else

System.out.println("…");
}

public void cureAll() {
for(int i=0; i<numPatients; i++)

patients[i].cure();
}

Start from a Hospital class – pretend
that Patient class is already working

Patient class is defined in a separate file,
that can be written by another programmer

public class Patient {
private String name;
private int age;
private String malady;

public Patient(String name, int age,
String malady) {

this.name = name;
this.age = age;
this.malady = malady;

}

public Patient() {
this.name = "John Doe";
this.age = 25;
this.malady = "unknown";

}

public void cure() {
this.malady = "healthy";

}
}

Define class Patient

Default constructor–
in case we don’t know

Running the Hospital

public class RunHospital {
public static void main (String [] args) {

Hospital h = new Hospital("US Best", 10);
h.addPatient(new Patient());
h.addPatient(new Patient("Sally Smith", 21, "bruised ego"));
h.addPatient(new Patient("Bob Swift", 18, "broken heart"));
System.out.println("In the morning:");
System.out.println(h);

h.cureAll();
System.out.println("In the evening:");
System.out.println(h);

}
}

The full code demo is here

https://github.com/mgbarsky/cs151_data_structure_demos/tree/main/3.composition/hospital

Reusing objects:
inheritance

Factoring-out similarities
• When we define a set of new types (classes) we often find that there

are similarities among them

• For example:

• Class Tiger and class Bear – both have a lot in common:

move(), eat(), sleep(), makeNoise()

• Instead of repeating these methods for each class, we can factor
out similarities and define these methods in a single class Animal

Tiger is an Animal Bear is an Animal

Inheritance hierarchy

• Where there’s inheritance, there’s an Inheritance Hierarchy of classes

• Mammal “is an” Animal

• Cat “is a” Mammal

• Transitive relationship: Cat “is an” Animal too

• We can say:

• Reptile, Mammal and Fish “inherit from” Animal

• Dog, Cat, and Moose “inherit from” Mammal

Animal

Reptile Mammal Fish

Cat MooseDog

Subclass of
class Animal

Animal is
called superclass

Inheriting properties (fields) and
capabilities (methods)

• Subclass inherits all capabilities of its superclass
• if Animals eat and sleep, then Reptiles, Mammals, and
Fish eat and sleep

• if Vehicles move, then SportsCars move

• Subclass specializes its superclass
• adding new fields and methods
• overriding (redefining) existing methods

• Superclass factors out capabilities common among its subclasses

• Subclasses are defined by their differences from their superclass

Designing with inheritance

Animal

makeNoise()
eat()
sleep()
move()

name
diet
energyLevel
boundaries
location

Lion Cat Tiger DogHippo Wolf

Superclass

Subclasses

package zoo;

public class Animal {

}

public class Bear extends Animal{

}

public class cat extends Animal{

}

Designing with inheritance

Animal

makeNoise()
eat()
sleep()
move()

name
diet
energyLevel
boundaries
location

Lion Cat Tiger DogHippo Wolf

Instance variables are the
same for all animals

So we define them all inside
class Animal

All the subclasses will
inherit instance variables
defined as public or
protected

Access modifiers recap
public: accessible to all other classes
protected: accessible to the class
declaring it and its subclasses
no modifier: accessible to the class
declaring it and all classes in the same
package
private: accessible only to the class
declaring it

Designing with inheritance

Animal

makeNoise()
eat()
sleep()
move()

name
diet
energyLevel
boundaries
location

Lion Cat Tiger DogHippo Wolf

sleep() and move() will be
the same for all animals

So we implement them only
in the superclass, and each
subclass has access to this
code

Designing with inheritance

Animal

makeNoise()
eat()
sleep()
move()

name
diet
energyLevel
boundaries
location

Lion Cat Tiger DogHippo Wolf

Each animal will have their
own makeNoise() and eat()

So we will override
makeNoise() and eat()
defined in Animal() with the
code specific to each
subclass

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

Example of a superclass and a subclass
public class Animal {

protected String name;
protected int energyLevel, x, y;
protected String diet;

public String getName() {return this.name;}

public void move(int dX, int dY) {
this.x += dX;
this.y += dY;
this.energyLevel-=(dX + dY);

}

public void eat() {
System.out.println(name +

" is eating " + diet);
this.energyLevel ++;

}

public void sleep() {
this.energyLevel ++;

}

public void makeNoise() {
}

}

public class Cat extends Animal{
public Cat() {

super("Cat", "mice");
}

public void eat() {
System.out.println("Cat is eating "

+ diet);
this.energyLevel += 3;

}

public void makeNoise() {
System.out.println("Purrr");

}
}

Inheritance: constructor
• A subclass inherits all the members (fields, methods, and nested

classes) from its superclass

• Constructors are not inherited by subclasses, but the constructor of the
superclass can be invoked from the subclass

public class Animal {
public Animal() {

this.name = "?";
this.energyLevel = 100;
this.x = 0;
this.y=0;

}

public Animal(String name) {
this();
this.name = name;

}

public Animal(String name, String diet) {
this(name);
this.diet = diet;

}
}

public class Cat extends Animal{
public Cat() {

super("Cat", "mice");
}
…

}

What is printed?

• A
Hello from A: 1
Hello from B: 5
Hello from C: 0

• B
Hello from A: 6
Hello from B: 5
Hello from C: 6

• C
Hello from A: 1
Hello from A: 5
Hello from C: 0

• D
None of the above

public class A {
int iVar;

public void hello() {
System.out.println("Hello from A: " + iVar);

}

public void work() {
iVar ++;

}
}

public class B extends A{
public void work() {

iVar += 5;
}

}

public class C extends A {
public void hello () {

System.out.println("Hello from C: " + iVar);
}

}

IN MAIN:
A a = new A();
B b = new B();
C c = new C();

a.work();
b.work();

a.hello();
b.hello();
c.hello();

Polymorphism

• The reference and the object can be of different types in
Java:

Animal c = new Cat();

Superclass Subclass

• We can treat the same object both as a subclass and as a
superclass

• c can be used both as an Animal and as a Cat

• c has “many forms” – polymorphism

• We can use polymorphic variables as method arguments,
return types or array types

Polymorphism: example

public class Animals {
public static void main(String [] args) {

Animal [] animals = new Animal[3];

animals[0] = new Dog();
animals[1] = new Cat();
animals[2] = new Lion();

for (Animal a: animals) {
System.out.println(a);
a.makeNoise();

}
}

}

Each animal makes
their own noise

• Because Dog, Cat and Lion are also Animals, we can store them in array
of Animals

• makeNoise is is declared in Animal (though it has an empty body), so we
can call it on each element of the Animal array

Why use inheritance

• Get rid of duplicate code by factoring out and implementing
common behavior

• Modify in one place, and the change is ‘magically’ carried
out to all subclasses

• Add new subclasses easily, and they have some methods
and properties right away

• Guarantee that all classes grouped under a certain
supertype have a common protocol

When to use inheritance

• When one class is a more specific version of another:

SportsCar extends Car

• When you have a method that is the same for a set of
classes:

Square, Circle, Triangle all need to have move() method in the
animation program, so make Shape their superclass

• Test:

• if you can say: X IS A Y, then use inheritance

• If you can say: X HAS A Y use composition

“IS A” test

• Which of the following is the correct use of inheritance:

A. class Oven extends Kitchen

B. class Guitar extends Instrument

C. class Ferrari extends Engine

D. class Person extends Student

E. None of the above

Java classes: single-root hierarchy

• All classes in Java (including our new custom classes) are
subclasses of a single root superclass called Object

• When we create a new class that does not extend anything,
this means implicitly:

public class Dog extends Object

• This means that Dog inherits all the methods of Object (see
here)

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

So what’s in Object?

• Important public methods implemented in Object:

public String toString();

public boolean equals(Object obj);

public int hashCode();

• If you do not override these methods, you inherit them
from the Object class

toString()

• System.out printing methods automatically call the
toString method on their parameters

• By default, the toString method of an Object class returns
a name of the new class and the memory location of the
object

• If we do not override the toString method, then toString()
of the nearest superclass will be used

Printing Dog using default toString()

Dog@3fee733d

public class Dog {
private String name;
private int height;

public Dog(String name, int height) {
this.name = name;
this.height = height;

}

public static void main (String [] args){
Dog d = new Dog("Fido", 15);
System.out.println(d);

}
}

Overriding default toString()

• We override the
toString of Object

• We return a
meaningful string
representation of
Dog’s state (instance
variables)

Here is Dog Fido 15 inches tall

public class Dog {
private String name;
private int height;

public String toString() {
return "Here is Dog "+this.name+ " "

+ this.height +" inches tall";
}

public static void main (String [] args) {
Dog d = new Dog("Fido", 15);
System.out.println(d);

}
}

equals()

• In class Object o1.equals(Object o2) returns true
only if both o1 and o2 are references to the same place in
memory – that is the default equals tests equality of
references

• We want to be able to compare objects themselves not
their addresses

• For this we override the default behavior of equals()
according to the logic of our program

• Note that == is still reserved for comparing references

Comparing Dogs

• What is printed?

• A
false
false
false

• B
false
true
true

• C
false
false
true

• D
None of the above

public class Dog {
private String name;
private String diet="BONE";
private int height;
private String owner;

public Dog(String name, int height) {
this.name = name;
this.height = height;

}

public static void main(String [] args) {
Dog a = new Dog("Fido", 20);
Dog b = new Dog("Ball", 10);
Dog c = new Dog("Fido", 20);
Dog d = a;

System.out.println(a.equals(b));
System.out.println(a.equals(c));
System.out.println(a.equals(d));

}
}

Comparing GoodDogs

• What is printed?

• A
false
false
false

• B
false
true
true

• C
false
false
true

• D
None of the above

public class GoodDog {
private String name;
private String owner;
private int height;

public GoodDog(String name, int height, String owner) {
this.name = name;
this.height = height;
this.owner = owner;

}

public boolean equals(GoodDog other) {
return (this.name.equals(other.name)

&& this.owner.equals(other.owner));
}

public static void main(String [] args) {
GoodDog a = new GoodDog("Fido", 20, "Sam");
GoodDog b = new GoodDog("Fido", 20, "Bob");
GoodDog c = new GoodDog("Fido", 20, "Sam");
GoodDog d = a;

System.out.println(a.equals(b));
System.out.println(a.equals(c));
System.out.println(a.equals(d));

}
}

How does Animal() look like?

• We factored out all the common
code into class Animal

• However a generic Animal does
not know how:

makeNoise()

getPicture()

getColor()

…

• All these methods are not
applicable to a generic class
Animal

Lion is an Animal Bear is an Animal

We want to prevent anyone
from making an instance of
Animal()

Animal class is too abstract!

Define Animal as abstract class

• Shared code which is
applicable to all subclasses is
still in concrete methods

• We can declare all the other
methods abstract

• Abstract methods do not
have body

• If the class has at least one
abstract method, it must be
declared abstract

• You must implement all
abstract methods in a
subclass

public abstract class Animal {
protected String name;
protected int energyLevel;
...

public void move(int dX, int dY) {
this.x += dX;
this.y += dY;
this.energyLevel --;

}

public void eat() {
...
this.energyLevel ++;

}

public void sleep() {
this.energyLevel ++;

}

public abstract void makeNoise();

public abstract Picture getPicture();

No instances of abstract animals

• You cannot create instances
of an abstract class:

Animal a = new Animal();

This will not compile

public abstract class Animal {
protected String name;
protected int energyLevel;
...

public void move(int dX, int dY) {
this.x += dX;
this.y += dY;
this.energyLevel --;

}

public void eat() {
...
this.energyLevel ++;

}

public void sleep() {
this.energyLevel ++;

}

public abstract void makeNoise();

public abstract Picture getPicture();

Why use Abstract classes

• Inheritance allows to store shared code in a superclass

• Sometimes we cannot find any generic code useful to all
subclasses

• In this case we declare a method in the superclass abstract
(and the entire superclass becomes abstract)

• Even though there is no code in an abstract method, it still
defines a common protocol that can be used in polymorphic
programs: each subclass of Animal knows to makeNoise()

• Compiler forces all the subclasses to implement the abstract
methods

Factoring out partial commonalities

• The Animal class defines a contract for all Lion, Hippo, Cat
and Dog types

• We can use this hierarchy for Animal Simulation program

• But now I want to reuse some of the code for my Pet Store
program

• I want to add play() method to some animals but not to all

• Basically I want some of the animals have an additional
contract defined in superclass Pet

Java solution to multiple-
inheritance problem
• Java does not allow a class to extend more than one

superclass = it does not allow multiple inheritance

• However we can guarantee Pet behavior for all pet animals
if we define all shared methods in a special Java class –
Interface

Not a GUI interface, not a colloquial use as in “public
methods provide interface”, but a special Java keyword
Interface

Pet interface

• In Interface all
methods are abstract

• All subclasses must
implement all of them

• Subclass extends a
Superclass and
implements Interface

public interface Pet {
public void play();

}

public class Dog extends Animal
implements Pet{

…
public void makeNoise() {

System.out.println("Wuff");
}

public void play() {
System.out.println("Dog playing");
this.makeNoise();

}

}

public class Cat extends Animal
implements Pet{

Why use Interface

If all the methods in
Interface are abstract – how
is this the code reuse?

• A subclass can extend one
superclass and implement
multiple interfaces

• Common interface can be
used for polymorphism

public class PetStore {
public static void main

(String [] args) {
Pet [] pets = new Pet [4];

pets[0] = new Cat();
pets[1] = new Cat();
pets[2] = new Cat();
pets[3] = new Dog();

for (Pet p: pets) {
p.play();

}
}

}

Which of the following is True?

A. You can't make an object of an Abstract class but you can
of an Interface.

B. You can't make an object of an Interface but you can of an
Abstract class.

C. You must implement all the abstract methods of the
Interface, but you do not have to implement all the
abstract methods of an Abstract class.

D. You can have both abstract and concrete methods in both
Interface and Abstract class.

E. None of the above

Interface example: 1/3

Class Duck

swim()

name
size

SpaceDuckWoodenDuckRubberDuckMallardDuck

Interface example: 2/3

Class Duck

swim()

name
size

SpaceDuck

<<Interface>> Quackable

quack()

<<Interface>> Flyable

fly()

WoodenDuckRubberDuckMallardDuck

Interface example: 3/3

Class Duck

swim()

name
size

SpaceDuck

fly()

<<Interface>> Quackable

quack()

<<Interface>> Flyable

fly()

WoodenDuckRubberDuckMallardDuck

fly()
quack() quack()

