
Introduction to Data
Structures

Two ways of storing data in
memory

Part I. Arrays

Lecture 5 by Marina Barsky

Outline

• Discuss two alternative ways of storing a sequence of
values:

➢Array

• Linked List

• Functionality:

• Get element by position (index)

• Search for a position of a target element

• Add new element at a given position

• Remove an element at a given position

Arrays Revisited

1 5 17 3 25
1 5 17 3 25

8 2 36 5 3
1D 2D

References

Definition
Array is a contiguous area of memory containing equal-size
elements indexed by contiguous integers

0 1 2 3 4 5 6

int A []

arrayAddr

=200

204

4 bytes

What we do with arrays

• Read operations:

• get (index i)

• find (Object o)

• Edit operations:

• add()

• remove()

What we do with arrays

• Read operations:

➢get (index i)

• find (Object o)

• Edit operations:

• add()

• remove()

0 1 2 3 4 5 6

• Because of contiguous arrangement we can directly

access any element of the array by index i.

• The address of A[i] is computed as:

arrayAddr + elemSize × (i)

and we can jump directly to this address

• For example, address of A[3] = 200+3*4 = 212

Get an element by index

int A []

200

4 bytes

A[3]

Same for Multi-Dimensional Arrays

(0,0)

(2,3)

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(1, 0)

…

arrayAddr + elemSize ×(2 × 6 + 3)

The position of element A[i][j] in 2D array
A[rows][cols] is computed as:
arrayAddr + elemSize × (i × rows + j)

What we do with arrays

• Read operations:

• get (index i)

➢find (Object o)

• Dynamic edit operations:

• add()

• remove()

Find an element: Linear Search

1. we iterate changing i from 0 to length - 1
2. if A[i] == target : found, return i
3. finished the loop : not found, return -1

0 1 2 3 4 5 6int A []

static int find (int [] A, int target) {
for (int i=0; i< A.length; i++) {

if (A[i] == target)
return i;

}
return -1;

}

What we do with arrays

• Read operations:

• get (index i)

• find (Object o)

➢Edit operations:

• add()

• remove()

Edit operations: add/remove
• We can use space allocated for the array to store a variable

number of elements

• We just need to distinguish between the array capacity (length)
and the actual number of elements in the array (we will call it
size)

• This is especially useful if we have array of references – we can
keep track of the number of actual objects in the array

5 8 3 12
size=4
capacity=7

We can store the
actual number of the
elements added to
the array in a variable
size

Add to the end of A

1. As long as capacity permits, add new element to the
empty slot at position size

2. Increment size by 1

5 8 3 12
size=4
capacity=7

5 8 3 12 4

A[size]=4
size=5
capacity=7

A

add(4)

Add in the middle of A
• We must keep elements consecutive: only contiguous

sequence in memory lets us fast retrieval by position

• If we want to insert an element at some position j of A, we
must shift all the elements from j to size-1 to the right

5 8 3 12 4
A[size]=4
size=5
capacity=7

5 8 3 12 4

for (int i=size; i>j; i--)
A[i] = A[i-1]

A[j]=9
size=6
capacity=7

5 8 9 3 12 4

We need to check
that j is a valid
position: j<=size

Remove from the end

• Simply decrement size

size=6
capacity=7

5 8 9 3 12 4

size=5
capacity=7

5 8 9 3 12 4

remove(size -1)

Remove in the middle

• To remove element at position j, shift all elements from j+1
to size to the left and decrement size

size=6
capacity=7

5 8 9 3 12 4

for (int i=j+1; i<size; i++)
A[i-1] = A[i]

size=5
capacity=7

5 9 3 12 4

remove(j=1)

Also need to check
that j is a valid
position: j<size

Bad things happen:

● Java: Array index out of bound
● Python: List index out of range
● C: No warnings, total corruption of program memory

If we try to add an element past
the capacity of the array:

But we cannot always know in advance how many
elements we are going to store in the Array!

A new data structure

Dynamic Array (also known as Resizable Array)

Idea: store in a variable a reference to an array and

when needed replace it with a new reference to a new

array, double size

Dynamic Array:
data structure that supports the same operations as a

regular array, but does not limit the number of

elements that it can hold

Definition

Dynamic allocation of space

int myArray[100];
//Adding data to myArray…
int[] newArray = new int[200];
System.arraycopy(myArray, 0, newArray, 0, 100);

• We keep track of the number of elements in the array using
variable size

• If size reaches capacity, then we need more space

• We allocate a new larger array and transfer data from an
old array to the new one

We need keep track of 3 variables:
● A: reference to the beginning of the array
● capacity: current length of the dynamically-allocated

array

● size: number of elements currently in the array

Dynamic array

Dynamic Array: Resizing

a

A

size: 1 capacity: 2

add(a)

Dynamic Array: Resizing

a b

A

size: 2 capacity: 2

add(b)

Dynamic Array: Resizing

a b

A

size: 2 capacity: 2

add(c)

Cannot add c: need to resize

Dynamic Array: Resizing

a b

A

size: 2 capacity: 4

add(c)

Resize array: copy old data

a b

Dynamic Array: Resizing

a b c

A

size: 3 capacity: 4

add(c)

Dynamic Array: Resizing

a b c d

A

size: 4 capacity: 4

add(d)

Dynamic Array: Resizing

a b c d e

A

size: 5 capacity: 8

add(e)

Which method in Dynamic Array
always requires only one operation?

A. Add to the end

B. Remove from the middle

C. Get element at position i

D. Find position of a given element

E. None of the above

Arrays: summary

• The discussion in this lecture relates to a general concept of an
Array as a way of storing a sequence of values, not an Array in
Java or in any other programming language

• The equal-sized sequence elements are placed consecutively in
memory, and this allows direct access to the i-th element of the
sequence in one operation

• To maintain this efficiency, we must make sure that there are no
gaps and this makes adding/removing elements more expensive

• The array capacity can be adjusted when needed through
doubling its size when it becomes full. The resizable array is called
a dynamic array

