
Introduction to Data
Structures

Two ways of storing data in
memory

Part II. Linked Lists

Lecture 6 by Marina Barsky

Outline

• Discuss two alternative ways of storing a sequence of
values:

• Array

➢Linked List

• Functionality:

• Get element by position (index)

• Search for a position of a target element

• Add new element at a given position

• Remove an element at a given position

▪ Java implementation:
▪ ArrayList
▪ LinkedList

▪ Java Generics

Alternative way of storing things:
Linked Structures

data data data data

Reference to (address of)
the first element of an
array: A [0]

A[0] A[1] A[2] A[3]

Array

link to next node

data

List node

head
link to next node

data

List node

NULL

data

List node

Linked
list

Reference to the
first node

Linked List – recursive definition

• Main element of the linked list: Node

• Each Node contains inside a link to the next
Node

class Node {

int data;

Node next;

}

class Node:
def __init__(self, data):

self.data = data
self.next = None

next:

data: 2

nodeAddr

What we do with Linked Lists?
Same things as with Arrays
• Read operations:

• get (index i)

• find (Object o)

• Edit operations:

• add()

• remove()

Traversing the list

next: node B

data: 2

head: address
of node A

next: node C

data: 3

next: NULL

data: 4

node A node B node C

1. Reference to head is all we need to know
2. We follow the sequence by following the links
3. We stop when there is no next

static void traverse (Node head) {
Node current = head;
while(current.next != null)

current = current.next;
}

public class Node{
int data;
Node next;

}

What we do with Linked Lists

• Read operations:

• get (index i)

• find (Object o)

• Edit operations:

➢add()

• remove()

Require list
traversal

Add in front

next: node B

data: 2

head: points
to node A

next: node C

data: 3

next: NULL

data: 4

node A node B node C

next: NULL

data: 1

node D
1. Create new node

Add in front

next: node B

data: 2

head: points
to node A

next: node C

data: 3

next: NULL

data: 4

node A node B node C

next: NULL

data: 1

node D
1. Create new node

2. Chain it into the list by setting
its next link to the old first
node, pointed to by head

Add in the middle (at position 1)

next: node B

data: 2

head: points
to node D

next: node C

data: 3

next: NULL

data: 4

node A node B node C

next: NULL

data: 1

node D

3. Update the head of the list:
new node D becomes the head

1. Create new node

2. Chain it into the list by setting
its next link to the old first
node, pointed to by head

Add in the middle

next: node B

data: 2

head: points
to node A

next: node C

data: 3

next: NULL

data: 4

node A node B node C

next: NULL

data: 1

node D

1. Create new node

Add in the middle

next: node B

data: 2

head: points
to node A

next: node C

data: 3

next: NULL

data: 4

node A node B node C

next: node B

data: 1

node D

1. Create new node D

2. Advance one step:
current node is node A

Add in the middle

next: node B

data: 2

head: points
to node A

next: node C

data: 3

next: NULL

data: 4

node A node B node C

next: node B

data: 1

node D

1. Create new node D

2. Advance one step:
current node is node A

3. Set next of D to the
next of A

Add in the middle

next: node D

data: 2

head: points
to node A

next: node C

data: 3

next: NULL

data: 4

node A node B node C

next: node B

data: 1

node D

1. Create new node D

2. Advance one step:
current node is node A

3. Set next of D to the
next of A

4. Set next of A to node D

Add in the middle

next: node D

data: 2

head: points
to node A

next: node C

data: 3

next: NULL

data: 4

node A node B node C

next: node B

data: 1

node D Just 3 rewiring
operations are required
to add after a given
node

Add to the end

Pointer to the
first node

head
next:
NULL

data: 4

next:

data: 3

next:

data: 2

a b c

1. In order to add to the end of the list we first need
to find the end

2. We need to traverse the entire list until we find a
node with next = null

Linked List variants: tail

● We can enhance Linked List by storing the pointer to the last
node - the tail pointer - and update it after each add/remove

● If we know the address of the last node, then we can add an
element at the end of the list by a single chaining operation -
think: how?

Pointer to the
first node

head
next:
NULL

data: 4

next:

data: 3

next:

data: 2

a b c

Pointer to the
last node

tail

Which statement(s) are True?

A. It is faster to find an element by position in Array than in
the Linked List

B. It is faster to find the position of a given element in Array
than in the Linked List

C. It is faster to resize the storage capacity of the Array than
that of the Linked List

D. All of the above

E. None of the above

Summary. Linked list

Advantages

• Can hold unlimited
number of elements

• Adding/Removing in the
beginning and the end is
cheap

• Adding/Removing in the
middle requires some
work, but does not
require moving other
elements (like as in Array)

Disadvantages

• No constant-time access
to an element by its
position

• Memory overhead (to
store links)

• To search we must to
traverse the entire list

Java List interface
• We saw that both Array and Linked List have the same

functionality

• In java.util library we find List Interface, which factors out
the common methods for working with a sequence of
elements

<<interface>> List

get (index)
indexOf (object)
add (element)
add (position, element)
remove (index)

Searches for an object
and returns its
position

Adds at the end

https://docs.oracle.com/javase/8/docs/api/java/util/List.html

Array and Linked List in Java

LinkedList:
underneath is a
doubly-linked list
with tail pointer

<<interface>> List

get (index)
indexOf (object)
add (element)
add (position, element)
remove (index)

ArrayList LinkedList

ArrayList:

underneath is a
dynamic/resizable
Array

class Node {

int data;

Node next;

Node previous;

}

In doubly-linked list
each node stores link
to its child and to its
parent node:

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

You’re implementing your own Array List, and
you want it to be able to hold any object (i.e.
Integers, Strings, People …).
What is the best way to specify the return type
for the get method?

A. This is impossible: I would need to implement a separate
class for each data type

B. Have get return type Object

C. Somehow set the type only when we create the ArrayList

D. Do something else

Lists for storing elements of any
type

• We can implement all the methods for a list of integers

• What if now we want to store Strings? Or Dogs? Should we
rewrite all the methods?

• Maybe we should write the code to always store Objects?

• But in this case:

• We would be able to add anything into the same list!

• We would need to cast each Object back to String or
Dog to be able to do something useful with it

• The cast may fail during the runtime! Type safety is
violated

Java’s solution: Generics

• Java's solution to this is to

allow classes to

parameterize types

• Here is a class that can be

used with any type of data

• <T> is a type parameter

• Note reference to type T

through the class body

• All Ts will be substituted

with an actual type during

compilation

public class Node<T> {
private T data;
private Node<T> next;

public Node(T data) {
this.data = data;

}

public T getData() {
return this.data;

}

public Node<T> getNext(){
return this.next;

}

public void setNext(Node<T> next) {
this.next = next;

}
}

Generic class can be used with
any data type

• <T> is just a placeholder for the
future data type

• A specific instance of Node
must choose which actual type
should be used, and all Ts in
code will be substituted with
this type

public static void main(String [] args) {
Node<String> n1 = new Node <String> ("message");
System.out.println(n1.getData());

}

public class Node<T> { …
}

public class Node {
private String data;
private Node next;

public Node(String data) {
this.data = data;

}

public String getData() {
return this.data;

}
…

}

The Node class
looks like this
after compilation

• The actual types that can substitute type parameters <T>
MUST be of reference type

• Primitive types, such as int, boolean, and float are not
allowed

• Fortunately, Java provides wrapper classes for each of the
primitive types:
• For example, Integer is a Java class that holds a single

int value
• Java even automatically wraps and unwraps primitive

types:

Reference types only

Node<Integer> n2 = new Node <Integer>(55);
int num = n2.getData();

What is faster?

Operation ArrayList LinkedList

Get i-th element

Search for an element

Add new element at the end

Add element in the middle

Remove from the end

Remove from the middle

Resize when full

We need to learn algorithm analysis tools to answer this

See next lecture…

