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Developing Algorithms: steps

1. Formalize the problem: input and output

2. Brainstorm solution

3. Express solution: pseudocode

4. Prove correctness (outside the scope of this 
course)

➢ Estimate running time

1. Estimate space usage



How long does it take to compute?
The pseudocode makes it easy to count the total number of steps as 

it relates to the input size n and the nature of the input

● It may happen that algorithm finds target already on the first 

iteration: 1 comparison and we are done

● However, it may take n comparisons in case that target is not 

in A: n operations in total

n = length of A

for i from 0 to n-1:

if A[i] == target:

return i

return -1

Algorithm find (array A, target)



Number of operations vs. input size

• We can count number of steps for a variety of inputs 
and for different values of n and plot the results 
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Number of steps as function of n

● We want to discover function f(n) from the input 
size n to the total number of steps

● We also see that there is the best case and the 
worst case for each n
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● The best case time complexity of an algorithm is the function 

defined by the minimum number of steps taken on any instance 

of size n.

● The average-case complexity of the algorithm is the function  

defined by an average number of steps taken on any instance  of 

size n.

● The worst case complexity of an algorithm is the function 

defined by the maximum number of steps taken on any instance 

of size n.

● Each of these complexities defines a numerical function: 

number of operations vs. size of the input

Time complexity



We are more interested in the 
worst case
• The nature of the input is generally not known in advance
• We concentrate on the worst-case: we want to know if it is 

practical to run this algorithm on large inputs of unknown 
nature

Worst Case
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Counting steps: RAM model
The process of counting computer operations is greatly simplified if 

we accept the RAM model of computation:

• Access to each memory element takes a constant time (1 step)

• Each “simple” operation (+, -, =, /, if, call) takes 1 step.

• Loops and function/method calls are not simple operations: they 
depend upon the size of the data and the contents of a 
subroutine:

○ “sort()” is not a single-step operation

○ “max(list)” is not a single-step operation

○ “ if x in list” is not a single-step operation

The RAM model is useful and accurate in the same sense as 

the flat-earth model (which is useful)!



Loops

The running time of a loop is, at most, the running time 
of the statements inside the loop (including if tests) 
multiplied by the total number of iterations.

Total steps = 1 + 2n + n = 3n +1

m = 0
for i from 0 to n-1: #repeat n times:  

#2 operations –
#increment i, test condition

m = m + 2 #one assignment



Nested loops

Analyze from the inside out. 

Total running time is the product of the sizes of all the nested 
loops.

for i from 0 to n-1: # outer loop - 2n times

for j from 0 to n-1: # inner loop - 2n times

k = k+1 # 1 time

Total time = 3 n × 2 n = 6n2



Consecutive statements
Add the time complexity of each statement.

x = x + 1 # 1

for i from 0 to n-1: # 2n times

m = m+2 # 1 time

for i from 0 to n-1: # 2n times

for j from 0 to n-1: # 2n times

k = k+1 # 1 time

Total time = 1 + 3n + 2n × 3n = 6n2 + 3n + 1 



If-then-else statements

Operations: the test, plus either the then part or the else 
part: whichever is the largest.

if len(t) == 0: # test: 1

return false # then part: 1

else: # else part:

for n from 0 to len(t)-1: # loop: 2n

if t[n] == p[n]: # if: 1 (no else)

return false
return true # test: 1

Total time = 1 + (3 n + 1)= 3n + 2



Let’s count! What is the closest to 
the total number of all steps?

A. 3n + 4n + 3n 

B. 3n × 4n × 3n

C. 3n/2 + 4n + 3n

D. 3n × 2n × 3n

count = 0

for i from n/2 to n:                 
j = 0

while  j <= n:             
k = 1

while k <= n:                 
count = count + 1
k = k + 1

j = j + 1

return count



Logarithmic complexity

The loop takes a logarithmic number of steps if in each 
iteration the iteration variable is multiplied by some 
factor (i doubles in this example): 

i = 1
while i<=n:

i = i*2

• If we observe carefully, the value of i is doubling every time
• Initially i = 1, in next step i = 2, and in subsequent steps i = 

4, 8 and so on 



Logarithmic complexity

i = 1
while i<=n:

i = i*2

• Let us assume that the loop is executing some k times -
before i becomes > n 

• At k-th step 2k = n, and at (k + 1)-th step we come out of 
the loop 

• Taking logarithm on both sides: log(2k) = log n
k log 2 = log n
k = log n



Logarithmic complexity

The loop takes a logarithmic number of steps if in each 
iteration it doubles the iteration variable: 

i = 1
while i<=n:

i = i*2

Total time = 1 + 2 log n 



Logarithmic complexity

The same logic holds for the decreasing sequence as well:

i = n
while i >= 1:

i = i/2

Total time = 1 + 2 log n 


