
Algorithms
Time complexity

Lecture 8 by Marina Barsky

Developing Algorithms: steps

1. Formalize the problem: input and output

2. Brainstorm solution

3. Express solution: pseudocode

4. Prove correctness (outside the scope of this
course)

➢ Estimate running time

1. Estimate space usage

How long does it take to compute?
The pseudocode makes it easy to count the total number of steps as

it relates to the input size n and the nature of the input

● It may happen that algorithm finds target already on the first

iteration: 1 comparison and we are done

● However, it may take n comparisons in case that target is not

in A: n operations in total

n = length of A

for i from 0 to n-1:

if A[i] == target:

return i

return -1

Algorithm find (array A, target)

Number of operations vs. input size

• We can count number of steps for a variety of inputs
and for different values of n and plot the results

1 2 3 4

. .

N

problem
size

number of
elementary
steps

Different inputs

of size 4

Number of steps as function of n

● We want to discover function f(n) from the input
size n to the total number of steps

● We also see that there is the best case and the
worst case for each n

Best Case

Worst Case

Average Case

1 2 3 4

. .

N

problem
size

number of
elementary
steps

● The best case time complexity of an algorithm is the function

defined by the minimum number of steps taken on any instance

of size n.

● The average-case complexity of the algorithm is the function

defined by an average number of steps taken on any instance of

size n.

● The worst case complexity of an algorithm is the function

defined by the maximum number of steps taken on any instance

of size n.

● Each of these complexities defines a numerical function:

number of operations vs. size of the input

Time complexity

We are more interested in the
worst case
• The nature of the input is generally not known in advance
• We concentrate on the worst-case: we want to know if it is

practical to run this algorithm on large inputs of unknown
nature

Worst Case

1 2 3 4

. .

N

problem
size

number of
elementary
steps

Counting steps: RAM model
The process of counting computer operations is greatly simplified if

we accept the RAM model of computation:

• Access to each memory element takes a constant time (1 step)

• Each “simple” operation (+, -, =, /, if, call) takes 1 step.

• Loops and function/method calls are not simple operations: they
depend upon the size of the data and the contents of a
subroutine:

○ “sort()” is not a single-step operation

○ “max(list)” is not a single-step operation

○ “ if x in list” is not a single-step operation

The RAM model is useful and accurate in the same sense as

the flat-earth model (which is useful)!

Loops

The running time of a loop is, at most, the running time
of the statements inside the loop (including if tests)
multiplied by the total number of iterations.

Total steps = 1 + 2n + n = 3n +1

m = 0
for i from 0 to n-1: #repeat n times:

#2 operations –
#increment i, test condition

m = m + 2 #one assignment

Nested loops

Analyze from the inside out.

Total running time is the product of the sizes of all the nested
loops.

for i from 0 to n-1: # outer loop - 2n times

for j from 0 to n-1: # inner loop - 2n times

k = k+1 # 1 time

Total time = 3 n × 2 n = 6n2

Consecutive statements
Add the time complexity of each statement.

x = x + 1 # 1

for i from 0 to n-1: # 2n times

m = m+2 # 1 time

for i from 0 to n-1: # 2n times

for j from 0 to n-1: # 2n times

k = k+1 # 1 time

Total time = 1 + 3n + 2n × 3n = 6n2 + 3n + 1

If-then-else statements

Operations: the test, plus either the then part or the else
part: whichever is the largest.

if len(t) == 0: # test: 1

return false # then part: 1

else: # else part:

for n from 0 to len(t)-1: # loop: 2n

if t[n] == p[n]: # if: 1 (no else)

return false
return true # test: 1

Total time = 1 + (3 n + 1)= 3n + 2

Let’s count! What is the closest to
the total number of all steps?

A. 3n + 4n + 3n

B. 3n × 4n × 3n

C. 3n/2 + 4n + 3n

D. 3n × 2n × 3n

count = 0

for i from n/2 to n:
j = 0

while j <= n:
k = 1

while k <= n:
count = count + 1
k = k + 1

j = j + 1

return count

Logarithmic complexity

The loop takes a logarithmic number of steps if in each
iteration the iteration variable is multiplied by some
factor (i doubles in this example):

i = 1
while i<=n:

i = i*2

• If we observe carefully, the value of i is doubling every time
• Initially i = 1, in next step i = 2, and in subsequent steps i =

4, 8 and so on

Logarithmic complexity

i = 1
while i<=n:

i = i*2

• Let us assume that the loop is executing some k times -
before i becomes > n

• At k-th step 2k = n, and at (k + 1)-th step we come out of
the loop

• Taking logarithm on both sides: log(2k) = log n
k log 2 = log n
k = log n

Logarithmic complexity

The loop takes a logarithmic number of steps if in each
iteration it doubles the iteration variable:

i = 1
while i<=n:

i = i*2

Total time = 1 + 2 log n

Logarithmic complexity

The same logic holds for the decreasing sequence as well:

i = n
while i >= 1:

i = i/2

Total time = 1 + 2 log n

