Algorithms

Bounding functions. Big Oh

Lecture 9 by Marina Barsky

Still exact analysis can be hard!

Best, worst, and average case are all difficult to deal with because the precise function details may be complicated:

It is easier to talk about upper and lower bounds of a function

Asymptotic notation ($0, \Theta, \Omega$) allows us to describe complexity functions in terms of these bounds

Bounding from above: Big Oh

$f(n)=\boldsymbol{O}(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0} the value of $f(n)$ always lies on or below $c \cdot g(n)$

Other bounding functions

- The definitions imply a constant n_{0} beyond which they are satisfied
- We do not care about small values of n

Big Oh guarantees

- Big O guarantees that for a given input size n the algorithm never exceeds the value of some function on n

Big Oh ignores low order terms

- For Big-O analysis, we care more about the part that grows fastest as the input grows, because everything else is quickly becomes negligible small as n gets very large

Low order terms are quickly eclipsed by higher-order terms

Big Oh ignores constants

- For big values of n, the terms that contain variable n quickly dominate all the values that stay constant
- Thus to compare $g(n)=1000 n$ and $h(n)=0.05 n^{2}$ we should ignore constants and compare $\mathrm{O}(\mathrm{n})$ with $\mathrm{O}\left(\mathrm{n}^{2}\right)$. The second algorithm is slower than the first

We ignore constants

Big Oh represents the rate of growth

- We use Big O Notation to talk about how quickly the runtime grows with the increase in the input size
- For example, let's say the algorithm runs in total $2 n(n-1)$ steps
- For one thing, for REALLY large values of n, such as $n=1,000,0002 n(n-1)$ is pretty much the same thing as $2 n^{2}$.
- For another, what happens if we increase the size of the list by a factor of k, from n to $k n$?
- The number of basic operations will increase by a factor of $2(k n)^{2} / 2 n^{2}=k^{2}$

Big Oh represents the rate of growth

- We use Big O Notation to talk about how quickly the runtime grows with the increase in the input size
- Big O bounds the speed of growth:
so we can say things like the runtime grows "on the order of the size of the input" $(O(n))$ or "on the order of the square of the size of the input" $\left(O\left(n^{2}\right)\right)$

Reasoning about time complexity

- When you intuitively understand an algorithm, the reasoning about the run-time of an algorithm can be done in your head
- But it is usually much easier to estimate complexity given a precise-enough pseudocode (or a code)
- To get big-Oh:
- Count all the elementary operations
- Ignore (remove) lower order (i.e. slower growing) terms
- Remove constant factors
- For example: $5 n^{3}+3 n^{2}+177$ is still $O\left(n^{3}\right)$

What is $O()$ of
$f(n)=n(n+1) / 2$
A. $O\left(n^{2}\right)$
B. $O\left(2 n^{2}\right)$
C. $O\left(\left(n^{2}+n\right) / 2\right)$
D. $O\left(n^{3}\right)$
E. I don't know

Let's do some Big-Oh analysis!

A. Algorithm that sums numbers from 1 to n

int A(int $n) ~\{$
int sum $=0$;
for (int $i=1 ; i<=n ; i++)$ sum $+=i$;
return sum;
A. $O(\log n)$
B. $O(n)$
C. $O\left(n^{2}\right)$
D. $O(n+1)$

A. Algorithm that sums numbers from 1 to n

```
int A(int \(n\) ) \{
    int sum \(=0\);
    for (int \(i=1 ; i<=n ; i++)\)
        sum += i;
    return sum;
\}
```

A. $O(\log n)$
B. $O(n)$
C. $O\left(n^{2}\right)$
D. $O(n+1)$

Answer B: One loop with n iterations. O(n).
Answer $\mathrm{D}: \mathrm{O}(\mathrm{n}+1)$ is also correct, but we usually remove constants

B. Nested loop?

int $B(i n t \mathrm{n})$ \{
int sum $=0$;
A. $O(\log n)$
for (int $i=1 ; i<=2 * n ; i++$) B. $\mathrm{O}(\mathrm{n})$ for (int $j=0 ; j<5 ; j++$) sum $+=j$;
C. $O\left(n^{2}\right)$
return sum;
D. O(5*2*n)

B. Nested loop?

```
int B(int n) {
    int sum = 0;
    for (int i=1; i <= 2*n; i++) B.O(n)
        for (int j=0; j < 5; j++)
        sum += j;
    return sum;
}
```


A. $\mathrm{O}(\log \mathrm{n})$ B. $\mathrm{O}(\mathrm{n})$ C. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
 D. $O\left(5^{*} 2^{*} n\right)$

Analysis: The inner for-loop (on j) always adds 5 numbers together, and the outer loop (on i) does this $2^{*} n$ times. So this is $\mathrm{O}\left(5^{*} 2^{*} \mathrm{n}\right)=\mathrm{O}(\mathrm{n})$.
Answers B and D are both correct, but answer B is better.

C. Nested loop?

int $C(i n t \mathrm{n})$ \{
int sum $=0$;
for (int $i=1 ; i<=n ; i++)$ for (int $j=0 ; j<=n ; j++$) sum $+=$ j;
return sum;
A. $\mathrm{O}(\mathrm{n})$
B. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
C. $O\left(n^{n}\right)$
D. The answer depends on the value of n

C. Nested loop?

```
int C(int n) {
    int sum = 0;
    for (int i=1; i <= n; i++)
        for (int j=0; j <= n; j++)
        sum += j;
    return sum;
}
```

A. $\mathrm{O}(\mathrm{n})$
B. $O\left(n^{2}\right)$
C. $O\left(n^{n}\right)$
D. The answer
depends on
the value of n

Analysis: The inner loop (on j) has n steps
It runs n times: for each value of i from 1 to n. Altogether this is $n+n+n+\ldots+n$ steps. So this is B : $O\left(\mathrm{n}^{2}\right)$.

D. Loops

int $D(i n t n)$ \{
int sum $=0$;
for (int $i=1 ; i<=n ; i++)$ sum $+=$ i*i;
A. $\mathrm{O}(\mathrm{n})$
B. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
for (int $j=0 ; j<n ; j++$) sum-= j;
C. $\mathrm{O}\left(\mathrm{n}^{3}\right)$
D. $\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$
for (int $k=0 ; k<2 * n ; k++$) sum $=$ sum*k;
return sum;
\}

D. Loops

int $D(i n t \mathrm{n})$ \{
int sum $=0$;
for (int $i=1 ; i<=n ; i++$) sum $+=i * i ;$
for (int $j=0 ; j<n ; j++$) sum-= j;
A. $O(n)$
B. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
C. $\mathrm{O}\left(\mathrm{n}^{3}\right)$
for (int $k=0 ; k<2 * n ; k++$)
D. $\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$

$$
\text { sum }=\text { sum*k; }
$$

return sum;
\}
Analysis: Note that the loops are sequential, not nested. The loop on i does n additions. After it finished, the loop on j does n subtractions. Then the loop on k does 2 n multiplications. Altogether there are 4 n steps. This is $\mathrm{A}: \mathrm{O}(\mathrm{n})$

E. While...

```
int E(int n) {
    int count = 0;
```

 for (int \(i=n / 2 ; i<n ; i++)\{\)
 int \(j=0\);
 while (\(j+n / 2<=n\))
 int \(k=1\);
 A. $O\left(n^{3}\right)$
B. $O\left(n \log ^{2} n\right)$
C. $\mathrm{O}\left(\mathrm{n}^{2} \sqrt{ } n\right)$
D. $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$
while (k <= n) \{
count $=$ count +1 ;
k = k*2;
\}
j $=$ j +1 ;
\}

E. While...

```
int E(int n) {
    int count = 0;
```

A. $O\left(n^{3}\right)$
for (int $i=n / 2 ; i<n ; i++)\{$ int j $=0$;
while ($j+n / 2<=n$) int $k=1$;
B. $O\left(n \log ^{2} n\right)$
C. $\mathrm{O}\left(\mathrm{n}^{2} \sqrt{ } n\right)$
D. $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$
while (k <= n) \{
count $=$ count +1 ;
k = k*2;
\}
Analysis: 3 nested loops. We start with the innermost loop - loop on k. It runs $\log n$ times

$$
j=j+1 ;
$$

The next loop is on j . It runs $\mathrm{n} / 2$ times The outer loop also runs $n / 2$ times. The loops are nested so we multiply: $n / 2 * n / 2 * \log n$ $=0\left(n^{2} \log n\right)$

F. Break

```
int F(int n) {
    if (n == 1) return 1;
    for (int i = 0; i<n; i++){
        for(int j= 0; j<n; j++) {
        System.out.println("*");
        break;
        }
    }
}
```


F. Break

```
int F(int n) {
    if (n == 1) return 1;
    for (int i = 0; i<n; i++){
        for(int j= 0; j<n; j++) {
        System.out.println("*");
        break;
        }
    }
}
```

Correct answer is B

