
Algorithms
Bounding functions. Big Oh

Lecture 9 by Marina Barsky

Still exact analysis can be hard!

Best, worst, and average case are all difficult to deal with because
the precise function details may be complicated:

f(n)

lower bound

upper bound
n0

n
1 2 3 4

It is easier to talk about upper and lower bounds of a function

Asymptotic notation (O, Θ, Ω) allows us to describe complexity
functions in terms of these bounds

Bounding from above: Big Oh

f (n) = O(g(n)) if there are positive constants n0 and c such that to
the right of n0 the value of f (n) always lies on or below c · g(n)

n

f(n)

c*g(n)

n0
(a)

Complexity
function

Bounding from
above: big Oh

Other bounding functions

n

f(n)

c*g(n)

n

f(n)

c*g(n)

n

f(n)

c1*g(n

c2*g(n)

(c)

n0 n0

(b)(a)

n0

• The definitions imply a constant n0 beyond which they
are satisfied

• We do not care about small values of n

Big O Big Ω Big Θ

Big Oh guarantees

• Big O guarantees that for a given input size n the
algorithm never exceeds the value of some function on n

Big Oh ignores low order terms

• For Big-O analysis, we care more about the part that
grows fastest as the input grows, because everything else
is quickly becomes negligible small as n gets very large

Low order terms are
quickly eclipsed by
higher-order terms

Big Oh ignores constants

• For big values of n, the terms that contain variable n
quickly dominate all the values that stay constant

• Thus to compare g(n) = 1000n and h(n)= 0.05n2 we should
ignore constants and compare O(n) with O(n2). The second
algorithm is slower than the first

We ignore constants

Big Oh represents the rate of
growth

• We use Big O Notation to talk about how quickly the
runtime grows with the increase in the input size

• For example, let’s say the algorithm runs in total 2n(n-1)
steps

• For one thing, for REALLY large values of n, such as
n=1,000,000 2n(n-1) is pretty much the same thing as
2n2.

• For another, what happens if we increase the size of
the list by a factor of k, from n to kn?

• The number of basic operations will increase by a
factor of 2(kn)2/2n2 = k2

Big Oh represents the rate of
growth

• We use Big O Notation to talk about how quickly the
runtime grows with the increase in the input size

• Big O bounds the speed of growth:

so we can say things like the runtime grows “on the
order of the size of the input” (O(n)) or “on the order
of the square of the size of the input” (O(n²))

Reasoning about time complexity

• When you intuitively understand an algorithm, the
reasoning about the run-time of an algorithm can be
done in your head

• But it is usually much easier to estimate complexity
given a precise-enough pseudocode (or a code)

• To get big-Oh:
• Count all the elementary operations
• Ignore (remove) lower order (i.e. slower growing)

terms

• Remove constant factors

• For example: 5n3+3n2+177 is still O(n3)

What is O() of
f(n) = n(n+1)/2

A. O(n2)

B. O(2n2)

C. O((n2 + n)/2)

D. O(n3)

E. I don't know

Let’s do some Big-Oh
analysis!

int A(int n) {

int sum = 0;

for (int i=1; i <= n; i++)

sum += i;

return sum;

}

A. Algorithm that sums numbers
from 1 to n

A. O(log n)

B. O(n)

C. O(n2)

D. O(n+1)

int A(int n) {

int sum = 0;

for (int i=1; i <= n; i++)

sum += i;

return sum;

}

A. Algorithm that sums numbers
from 1 to n

A. O(log n)

B. O(n)

C. O(n2)

D. O(n+1)

Answer B: One loop with n iterations. O(n).
Answer D: O(n+1) is also correct, but we usually remove
constants

int B(int n) {

int sum = 0;

for (int i=1; i <= 2*n; i++)

for (int j=0; j < 5; j++)

sum += j;

return sum;

}

B. Nested loop?

A. O(log n)

B. O(n)

C. O(n2)

D.O(5*2*n)

int B(int n) {

int sum = 0;

for (int i=1; i <= 2*n; i++)

for (int j=0; j < 5; j++)

sum += j;

return sum;

}

B. Nested loop?

A. O(log n)

B. O(n)

C. O(n2)

D.O(5*2*n)

Analysis: The inner for-loop (on j) always adds 5 numbers together, and the outer
loop (on i) does this 2*n times. So this is O(5*2*n) = O(n).
Answers B and D are both correct, but answer B is better.

int C(int n) {

int sum = 0;

for (int i=1; i <= n; i++)

for (int j=0; j <= n; j++)

sum += j;

return sum;

}

C. Nested loop?

A. O(n)
B. O(n2)
C. O(nn)
D. The answer

depends on
the value of n

int C(int n) {

int sum = 0;

for (int i=1; i <= n; i++)

for (int j=0; j <= n; j++)

sum += j;

return sum;

}

C. Nested loop?

A. O(n)
B. O(n2)
C. O(nn)
D. The answer

depends on
the value of n

Analysis: The inner loop (on j) has n steps
It runs n times: for each value of i from 1 to n. Altogether this is n+n+n+ …+ n steps.
So this is B: O(n2).

int D(int n) {

int sum = 0;

for (int i=1; i <= n; i++)

sum += i*i;

for (int j=0; j < n; j++)

sum-= j;

for (int k = 0; k < 2*n; k++)

sum = sum*k;

return sum;

}

D. Loops

A. O(n)

B. O(n2)

C. O(n3)

D. O(nn)

int D(int n) {

int sum = 0;

for (int i=1; i <= n; i++)

sum += i*i;

for (int j=0; j < n; j++)

sum-= j;

for (int k = 0; k < 2*n; k++)

sum = sum*k;

return sum;

}

D. Loops

A. O(n)

B. O(n2)

C. O(n3)

D. O(nn)

Analysis: Note that the loops are sequential, not nested. The loop on i does n
additions. After it finished, the loop on j does n subtractions. Then the loop on k does
2n multiplications. Altogether there are 4n steps. This is A: O(n)

int E(int n) {

int count = 0;

for (int i=n/2; i<n; i++){

int j = 0;

while (j + n/2 <= n){

int k = 1;

while (k <= n){

count = count + 1;

k = k*2;

}

j = j + 1;

}

}

E. While…

A. O(n3)

B. O(n log 2 n)

C. O (n2 √n)

D. O(n2 log n)

int E(int n) {

int count = 0;

for (int i=n/2; i<n; i++){

int j = 0;

while (j + n/2 <= n){

int k = 1;

while (k <= n){

count = count + 1;

k = k*2;

}

j = j + 1;

}

}

E. While…

A. O(n3)

B. O(n log 2 n)

C. O (n2 √n)

D. O(n2 log n)

Analysis: 3 nested loops. We start with the
innermost loop – loop on k. It runs log n times
The next loop is on j. It runs n/2 times
The outer loop also runs n/2 times.
The loops are nested so we multiply: n/2*n/2*log n
= O (n2 log n)

int F(int n) {

if (n == 1) return 1;

for (int i = 0; i<n; i++){

for(int j= 0; j<n; j++) {

System.out.println("*");

break;

}

}

}

F. Break

A. O(n2)

B. O(n)

C. O (1)

D. O(2n)

int F(int n) {

if (n == 1) return 1;

for (int i = 0; i<n; i++){

for(int j= 0; j<n; j++) {

System.out.println("*");

break;

}

}

}

F. Break

A. O(n2)

B. O(n)

C. O (1)

D. O(2n)

Correct answer is B

