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Lecture 9 by Marina Barsky



Still exact analysis can be hard!

Best, worst, and average case are all difficult to deal with  because 
the precise function details may be complicated:
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It is easier to talk about upper and lower bounds of a function  

Asymptotic notation (O, Θ, Ω) allows us to describe complexity 
functions in terms of these bounds



Bounding from above: Big Oh

f (n) = O(g(n)) if there are positive constants n0 and c such that to 
the right of n0 the value of f (n) always lies on or below c · g(n)
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Other bounding functions
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• The definitions imply a constant n0 beyond which they 
are satisfied 

• We do not care about small values of n

Big O Big Ω Big Θ



Big Oh guarantees

• Big O guarantees that for a given input size n the 
algorithm never exceeds the value of some function on n



Big Oh ignores low order terms

• For Big-O analysis, we care more about the part that 
grows fastest as the input grows, because everything else 
is quickly becomes negligible small as n gets very large



Low order terms are 
quickly eclipsed by 
higher-order terms











Big Oh ignores constants

• For big values of n, the terms that contain variable n
quickly dominate all the values that stay constant

• Thus to compare g(n) = 1000n and h(n)= 0.05n2 we should 
ignore constants and compare O(n) with O(n2). The second 
algorithm is slower than the first



We ignore constants











Big Oh represents the rate of 
growth

• We use Big O Notation to talk about how quickly the 
runtime grows with the increase in the input size

• For example, let’s say the algorithm runs in total 2n(n-1) 
steps

• For one thing, for REALLY large values of n, such as 
n=1,000,000  2n(n-1) is pretty much the same thing as 
2n2.

• For another, what happens if we increase the size of 
the list by a factor of k, from n to kn?

• The number of basic operations will increase by a 
factor of 2(kn)2/2n2 = k2



Big Oh represents the rate of 
growth

• We use Big O Notation to talk about how quickly the 
runtime grows with the increase in the input size

• Big O bounds the speed of growth: 

so we can say things like the runtime grows “on the 
order of the size of the input” (O(n)) or “on the order 
of the square of the size of the input” (O(n²))



Reasoning about time complexity

• When you intuitively understand an algorithm, the 
reasoning about the run-time of an algorithm can be 
done in your head 

• But it is usually much easier to estimate complexity 
given a precise-enough pseudocode (or a code)

• To get big-Oh:
• Count all the elementary operations
• Ignore (remove) lower order (i.e. slower growing) 

terms

• Remove constant factors

• For example: 5n3+3n2+177 is still O(n3)



What is O() of
f(n) = n(n+1)/2

A. O(n2)

B. O(2n2)

C. O((n2 + n)/2)

D. O(n3)

E. I don't know



Let’s do some Big-Oh 
analysis!



int A(int n) {

int sum = 0;

for (int i=1; i <= n; i++)

sum += i;

return sum;

}

A. Algorithm that sums numbers 
from 1 to n

A. O(log n)

B. O( n )

C. O( n2 )

D. O(n+1)



int A(int n) {

int sum = 0;

for (int i=1; i <= n; i++)

sum += i;

return sum;

}

A. Algorithm that sums numbers 
from 1 to n

A. O(log n)

B. O( n )

C. O( n2 )

D. O(n+1)

Answer B: One loop with n iterations.  O(n). 
Answer D: O(n+1) is also correct, but we usually remove 
constants



int B(int n) {

int sum = 0;

for (int i=1; i <= 2*n; i++)

for (int j=0; j < 5; j++)

sum += j;

return sum;

}

B. Nested loop?

A. O(log n)

B. O( n )

C. O( n2)

D.O(5*2*n)



int B(int n) {

int sum = 0;

for (int i=1; i <= 2*n; i++)

for (int j=0; j < 5; j++)

sum += j;

return sum;

}

B. Nested loop?

A. O(log n)

B. O( n )

C. O( n2)

D.O(5*2*n)

Analysis: The inner for-loop (on j) always adds 5 numbers together, and  the outer 
loop (on i) does this 2*n times.  So this is O(5*2*n) = O(n).  
Answers  B and D are both correct, but answer B is better.



int C(int n) {

int sum = 0;

for (int i=1; i <= n; i++)

for (int j=0; j <= n; j++)

sum += j;

return sum;

}

C. Nested loop?

A. O(n)
B. O(n2)
C. O(nn)
D. The answer 

depends on 
the value of n 



int C(int n) {

int sum = 0;

for (int i=1; i <= n; i++)

for (int j=0; j <= n; j++)

sum += j;

return sum;

}

C. Nested loop?

A. O(n)
B. O(n2)
C. O(nn)
D. The answer 

depends on 
the value of n 

Analysis: The inner loop (on j) has n steps
It runs n times: for each value of i from 1 to n.  Altogether this is n+n+n+ …+ n steps.  
So this is B: O(n2).



int D(int n) {

int sum = 0;

for (int i=1; i <= n; i++)

sum += i*i;

for (int j=0; j < n; j++)

sum-= j;

for (int k = 0; k < 2*n; k++)

sum = sum*k; 

return sum;

}

D. Loops

A. O(n)

B. O(n2)

C. O(n3)

D. O(nn)



int D(int n) {

int sum = 0;

for (int i=1; i <= n; i++)

sum += i*i;

for (int j=0; j < n; j++)

sum-= j;

for (int k = 0; k < 2*n; k++)

sum = sum*k; 

return sum;

}

D. Loops

A. O(n)

B. O(n2)

C. O(n3)

D. O(nn)

Analysis: Note that the loops are sequential, not nested.  The loop on i does n  
additions. After it finished,  the loop on j does n subtractions.  Then the  loop on k does 
2n multiplications.  Altogether there are 4n steps. This is A: O(n)



int E(int n) {

int count = 0;

for (int i=n/2; i<n; i++){                 

int j = 0;

while  (j + n/2 <= n){             

int k = 1;

while (k <= n){                 

count = count + 1;

k = k*2;

}

j = j + 1;

}

}

E. While…

A. O(n3)

B. O(n log 2 n)

C. O (n2 √n)

D. O(n2 log n)



int E(int n) {

int count = 0;

for (int i=n/2; i<n; i++){                 

int j = 0;

while  (j + n/2 <= n){             

int k = 1;

while (k <= n){                 

count = count + 1;

k = k*2;

}

j = j + 1;

}

}

E. While…

A. O(n3)

B. O(n log 2 n)

C. O (n2 √n)

D. O(n2 log n)

Analysis: 3 nested loops. We start with the 
innermost loop – loop on k. It runs log n times
The next loop is on j. It runs n/2 times
The outer loop also runs n/2 times.
The loops are nested so we multiply: n/2*n/2*log n 
= O (n2 log n)



int F(int n) {

if (n == 1) return 1;

for (int i = 0; i<n; i++){

for(int j= 0; j<n; j++) {

System.out.println("*");

break;

}

}

}

F. Break

A. O(n2)

B. O(n)

C. O (1)

D. O(2n)



int F(int n) {

if (n == 1) return 1;

for (int i = 0; i<n; i++){

for(int j= 0; j<n; j++) {

System.out.println("*");

break;

}

}

}

F. Break

A. O(n2)

B. O(n)

C. O (1)

D. O(2n)

Correct answer is B


