Who wants to be a millionaire Computer Scientist?

Preparation for the finals

Game 1

Question 1. 500 points

• If a **breadth-first search** starts at vertex E, the last vertex to be visited will be vertex _____.

Α	A	С	D
В	С	D	В

Question 1. 500 points

• If a **breadth-first search** starts at vertex E, the last vertex to be visited will be vertex _____.

Α	0	С	3
B	6	D	2

Question 2. 1,000 points

• At what position will we find 8 in the **min-heap** array below after we call *dequeue()*?

А	0	
В	3	

C	1
D	5

Question 2. 1,000 points

• At what position will we find 8 in the **min-heap** array below after we call *dequeue()*?

А	0	
В	3	

C	1	
D	5	

Question 3. 2,000 points

 Given the following table, where a hash function returns key % 11, which values can be inserted sequentially without collision?

А	22, 33, 44	С	23, 34, 45
В	23, 35, 47	D	22, 34, 45

Question 3. 2,000 points

 Given the following table, where a hash function returns key % 11, which values can be inserted sequentially without collision?

A	22, 33, 44	С	23, 34, 45
В	23, 35, 47	D	22, 34, 45

Question 4. 3,000 points

• Assuming that a breadth-first search starts at E, which vertices are in the Queue after vertices E, G, and D have been processed?

А	А, С	С	A, C, G
В	E, G	D	A, C, E, G

Question 4. 3,000 points

• Assuming that a breadth-first search starts at E, which vertices are in the Queue after vertices E, G, and D have been processed?

А	А, С	С	A, C, G
В	E, G	D	A, C, E, G

Question 5. 5000 points

• Using double hashing, how do we determine the first index when inserting item 20?

hash1(key) = key % 11 hash2(key) = 5 - key % 5 and a hash table with a size of 10

- A. (20 % 11 + 1 * (5 20 % 5)) % 10
- B. (20 % 11 + 0 * (5 20 % 5)) % 11
- C. (20 % 11 + 0 * (5 20 % 5)) % 10
- D. (20 % 11 + 1 * (5 20 % 5)) % 11

Α	С
В	D

Question 5. 5000 points

• Using double hashing, how do we determine the first index when inserting item 20?

hash1(key) = key % 11 hash2(key) = 5 - key % 5 and a hash table with a size of 10

- A. (20 % 11 + 1 * (5 20 % 5)) % 10
- B. (20 % 11 + 0 * (5 20 % 5)) % 11
- C. (20 % 11 + 0 * (5 20 % 5)) % 10
- D. (20 % 11 + 1 * (5 20 % 5)) % 11

Α	С
В	D

Checkpoint 1 reached!

You have 5,000 points

Question 6. 7,500 points

• Identify the new priority queue after enqueueing 40 into the minheap array shown below.

А	
В	

С	
D	

Question 6. 7,500 points

• Identify the new priority queue after enqueueing 40 into the minheap array shown below.

A	C
В	D

Question 7. 10,000 points

• What is the cost of the shortest path from Y to U in the following graph?

А	11
В	∞

^	17
C	ΤZ

D Something else

Question 7. 10,000 points

• What is the cost of the shortest path from Y to U in the following graph?

Question 8. 15,000 points

• After resizing a hash table with 13 buckets, the new size will be

Α	26	С	23
В	29	D	31

• After resizing a hash table with 13 buckets, the new size will be

•

A	26	C 23
В	29	D 31

Question 9. 25,000 points

• Identify the minimum spanning tree for the following graph:

Α		С	
В		D	

С	
D	

Question 9. 25,000 points

• Identify the minimum spanning tree for the following graph:

Question 10. 50,000 points

• Identify the order in which the vertices are discovered during a (non-recursive) DFS traversal of the graph starting with vertex B.

Question 10. 50,000 points

Identify the order in which the vertices are discovered during a (non-recursive) DFS traversal of the graph starting with vertex B.

Checkpoint 2 reached!

You have 50,000 points

Question 11. 75,000 points

• Identify the new max-heap-array created after the heapify operation of the following array:

Question 11. 75,000 points

• Identify the new max-heap-array created after the heapify operation of the following array:

Question 12. 150,000 points

- Consider a hash table of size 100.
- Which hash function produces the fewest number of collisions for keys 10, 20, 30, 40, 50, and 60?

Α	key % 6	С	key % 10
В	key % 50	D	key % 5

Question 12. 150,000 points

- Consider a hash table of size 100.
- Which hash function produces the fewest number of collisions for keys 10, 20, 30, 40, 50, and 60?

A	key % 6	С	key % 10
В	key % 50	D	key % 5

Question 13. 250,000 points

• How many times do we call *siftDown* (*percolateDown*) while sorting the following array using heapsort?

47 54	60	25	36	13	90
-------	----	----	----	----	----

A	6	С	12
В	9	D	18

Question 13. 250,000 points

• How many times do we call *siftDown* (*percolateDown*) while sorting the following array using heapsort?

47 54 60	25	36	13	90
----------	----	----	----	----

А	С
В	D

• What is the DGS of nodes C,D,E,F in the next iteration of the Dijkstra's algorithm?

	Iterat	ion 1	Iterat	ion 2
	Х	V-X	Х	V-X
	cost	DGS	cost	DGS
А	0		0	
В		2	2	
С		8		?
D		4		?
Е		8		?
F		8		?

А	C:6, D:8, E:5, F:5
В	C:8, D:13, E:7, F:7

С	C:8, D:4, E:7, F:7
D	C:6, D:4, E:5, F:5

• What is the DGS of nodes C,D,E,F in the next iteration of the Dijkstra's algorithm?

	Iterat	ion 1	Iterat	ion 2
	Х	V-X	Х	V-X
	cost	DGS	cost	DGS
А	0		0	
В		2	2	
С		8		8
D		4		4
Е		8		7
F		8		7

А	C:6, D:8, E:5, F:5
В	C:8, D:13, E:7, F:7

С	C:8, D:4, E:7, F:7
D	C:6, D:4, E:5, F:5

Question 15. One million points!

 Identify the order in which the vertices are discovered and processed during a (recursive) DFS traversal of the following graph starting with vertex A.

А	Discovery: ABCDE Processing: EDCBA	С	Discovery: ABCDE Processing: CBEDA
В	Discovery: ABDCE Processing: ECDBA	D	Discovery: ABCDE Processing: ABCDE

Question 15. One million points!

 Identify the order in which the vertices are discovered and processed during a (recursive) DFS traversal of the following graph starting with vertex A.

A	Discovery: ABCDE Processing: EDCBA	С	C Discovery: ABCDE Processing: CBEDA
В	Discovery: ABDCE Processing: ECDBA	D	D Discovery: ABCDE Processing: ABCDE

Well done!

You are almost ready for the final exam