Who wants to be a millionaire
 Computer Scientist?

Preparation for the finals
Game 1

- If a breadth-first search starts at vertex E, the last vertex to be visited will be vertex \qquad .

C D
D B

- If a breadth-first search starts at vertex E , the last vertex to be visited will be vertex \qquad .

C	3
D	2

The correct answer is \mathbf{C}.

- At what position will we find 8 in the min-heap array below after we call dequeue()?

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 6 & 8 & 10 & 15 & 18 & 25 \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

A	0
B	3

C	1
D 5	

- At what position will we find 8 in the min-heap array below after we call dequeue()?

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 6 & 8 & 10 & 15 & 18 & 25 \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array}
$$

A	0
B	3

C	1
D	5

The correct answer is C .

- Given the following table, where a hash function returns key $\% 11$, which values can be inserted sequentially without collision?
hashTable

0	11
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

A	$22,33,44$
B	$23,35,47$

C	$23,34,45$
D	$22,34,45$

- Given the following table, where a hash function returns key $\% 11$, which values can be inserted sequentially without collision?
hashTable

0	11
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

A	$22,33,44$
B	$23,35,47$

C	$23,34,45$
D	$22,34,45$

The correct answer is B.

- Assuming that a breadth-first search starts at E, which vertices are in the Queue after vertices E, G, and D have been processed?

A	A, C
B	E, G

$$
\begin{array}{ll}
\hline C & A, C, G \\
D & A, C, E, G \\
\hline
\end{array}
$$

- Assuming that a breadth-first search starts at E, which vertices are in the Queue after vertices E, G, and D have been processed?

A	A, C
B	E, G

C	A, C, G
D	A, C, E, G

The correct answer is A.

- Using double hashing, how do we determine the first index when inserting item 20?

$$
\begin{aligned}
& \text { hash1(key) }=\text { key } \% 11 \\
& \text { hash2(key) }=5-\text { key } \% 5
\end{aligned}
$$

and a hash table with a size of 10
A. $(20 \% 11+1$ * (5-20 \% 5)) $\% 10$
B. $(20 \% 11+0$ * $(5-20 \% 5)) \% 11$
C. $(20 \% 11+0$ * $(5-20 \% 5)) \% 10$
D. $\left(20 \% 11+1^{*}(5-20 \% 5)\right) \% 11$

C
D

- Using double hashing, how do we determine the first index when inserting item 20?

$$
\begin{aligned}
& \text { hash1(key) }=\text { key } \% 11 \\
& \text { hash2(key) }=5-\text { key } \% 5
\end{aligned}
$$

and a hash table with a size of 10
A. $(20 \% 11+1$ * (5-20 \% 5)) $\% 10$
B. $(20 \% 11+0$ * $(5-20 \% 5)) \% 11$
C. $(20 \% 11+0$ * $(5-20 \% 5)) \% 10$
D. $\left(20 \% 11+1^{*}(5-20 \% 5)\right) \% 11$

A
B

C
D

The correct answer is C.

Checkpoint 1 reached!
You have 5,000 points

- Identify the new priority queue after enqueueing 40 into the minheap array shown below.

29	36	42	54

A | 29 | 36 | 42 | 54 | 40 |
| :--- | :--- | :--- | :--- | :--- |

C | 29 | 36 | 40 | 42 | 54 |
| :--- | :--- | :--- | :--- | :--- |

B | 40 | 29 | 36 | 42 | 54 |
| :--- | :--- | :--- | :--- | :--- |

D | 29 | 36 | 42 | 40 | 54 |
| :--- | :--- | :--- | :--- | :--- |

C
D

- Identify the new priority queue after enqueueing 40 into the minheap array shown below.

29	36	42	54

A | 29 | 36 | 42 | 54 | 40 |
| :--- | :--- | :--- | :--- | :--- |

C | 29 | 36 | 40 | 42 | 54 |
| :--- | :--- | :--- | :--- | :--- |

B | 40 | 29 | 36 | 42 | 54 |
| :--- | :--- | :--- | :--- | :--- |

D | 29 | 36 | 42 | 40 | 54 |
| :--- | :--- | :--- | :--- | :--- |

A
B

C
The correct answer is C .

- What is the cost of the shortest path from Y to U in the following graph?

C 12

D Something else

- What is the cost of the shortest path from Y to U in the following graph?

A	11
B	∞

C 12
D Something else
The correct answer is B.

- After resizing a hash table with 13 buckets, the new size will be
\qquad .

C	23
D	31

- After resizing a hash table with 13 buckets, the new size will be
\qquad .

A	26
B	29

C	23
D	31

The correct answer is B.

- Identify the minimum spanning tree for the following graph:

A

B

C

D

A
B

- Identify the minimum spanning tree for the following graph:

A

B

C

D

C
D

The correct answer is B.

- Identify the order in which the vertices are discovered during a (nonrecursive) DFS traversal of the graph starting with vertex B.

C \quad B,D,C,E,A

- Identify the order in which the vertices are discovered during a (nonrecursive) DFS traversal of the graph starting with vertex B.

C	B, D, C, E, A
D	B, C, E, A, D

The correct answer is D .

Checkpoint 2 reached!

You have 50,000 points

Question 11. 75,000 points

- Identify the new max-heap-array created after the heapify operation of the following array:

47	25	36	60	54

A| 25 | 36 | 47 | 54 | 60 |
| :--- | :--- | :--- | :--- | :--- |

C | 60 | 54 | 36 | 25 | 47 |
| :--- | :--- | :--- | :--- | :--- |

B | 25 | 47 | 36 | 60 | 54 |
| :--- | :--- | :--- | :--- | :--- |

D | 60 | 54 | 47 | 36 | 25 |
| :--- | :--- | :--- | :--- | :--- |

C
D

Question 11. 75,000 points

- Identify the new max-heap-array created after the heapify operation of the following array:

47	25	36	60	54

A | 25 | 36 | 47 | 54 | 60 |
| :--- | :--- | :--- | :--- | :--- |

C | 60 | 54 | 36 | 25 | 47 |
| :--- | :--- | :--- | :--- | :--- |

B | 25 | 47 | 36 | 60 | 54 |
| :--- | :--- | :--- | :--- | :--- |

D | 60 | 54 | 47 | 36 | 25 |
| :--- | :--- | :--- | :--- | :--- |

C
D

The correct answer is C.

- Consider a hash table of size 100.
- Which hash function produces the fewest number of collisions for keys 10, 20, 30, 40, 50, and 60?

A	key \% 6
B	key \% 50

C	key \% 10
D	key \% 5

- Consider a hash table of size 100.
- Which hash function produces the fewest number of collisions for keys 10, 20, 30, 40, 50, and 60?

A	key \% 6
B	key \% 50

C	key \% 10
D	key \% 5

Question 13. 250,000 points

- How many times do we call siftDown (percolateDown) while sorting the following array using heapsort?

47	54	60	25	36	13	90

A	6
B	9

C	12
D	18

Question 13. 250,000 points

- How many times do we call siftDown (percolateDown) while sorting the following array using heapsort?

47	54	60	25	36	13	90

A
B

The correct answer is B.

- What is the DGS of nodes C,D,E,F in the next iteration of the Dijkstra's algorithm?

A	$C: 6, D: 8, E: 5, F: 5$
B	$C: 8, D: 13, E: 7, F: 7$

C	$C: 8, D: 4, E: 7, F: 7$
D	$C: 6, D: 4, E: 5, F: 5$

- What is the DGS of nodes C,D,E,F in the next iteration of the Dijkstra's algorithm?

	Iteration 1		Iteration 2	
	X	$\mathrm{V}-\mathrm{X}$	X	$\mathrm{V}-\mathrm{X}$
	cost	DGS	cost	DGS
A	0		0	
B		2	2	
C		∞		8
D		4		4
E		∞		7
F		∞		7

A	$C: 6, D: 8, E: 5, F: 5$
B	$C: 8, D: 13, E: 7, F: 7$

C	$C: 8, D: 4, E: 7, F: 7$
D	$C: 6, D: 4, E: 5, F: 5$

- Identify the order in which the vertices are discovered and processed during a (recursive) DFS traversal of the following graph starting with vertex A.

A	Discovery: ABCDE Processing: EDCBA
B	Discovery: ABDCE Processing: ECDBA

C Discovery: ABCDE Processing: CBEDA
D Discovery: ABCDE Processing: ABCDE

- Identify the order in which the vertices are discovered and processed during a (recursive) DFS traversal of the following graph starting with vertex A.

A	Discovery: ABCDE Processing: EDCBA
B	Discovery: ABDCE Processing: ECDBA

C	Discovery: ABCDE Processing: CBEDA
D	Discovery: ABCDE Processing: ABCDE

The correct answer is \mathbf{C}.

Well done!

You are almost ready for the final exam

