
Introduction
to Data Structures, Fall 2022

Instructors: Marina Barsky, Sam Taggart

The course is about

• Data structures

• Algorithms

• Java

The course is about

➢Data structures

• Algorithms

• Java

What is a Data Structure?

• Each program works on data: takes input data and
produces output data

• There are sophisticated ways to structure data in memory
– that makes program efficient

The choice of a suitable data structure can make all the
difference between a working and a failing program

Example: Most Frequent Word

https://github.com/mgbarsky/cs151_data_structure_demos/tree/main/0.DS

Many Data Structures exist

• Simple: arrays, linked lists, stacks, queues

• More intricate - but still very useful: heaps, search trees,
hash tables

• Advanced - Bloom filters, union-find …

• Why do we need so many? Because different data
structures support different sets of operations and are
good for different types of tasks.

5

We need to know what exists and
what it is good for

• We will discuss the pros and cons of each data
structure for a particular task

• The fewer operations the data structure supports -
the faster these operations will be

The skill: think about the operations that you need for
solving a problem

Choose the best data structure - the one that supports
only required operations, and not more.

6

Four levels of Data Structure
Proficiency

• Level 0: ignorance

• Level 1: cocktail party awareness

• Level 2: solid literacy: know which data structures are
appropriate for which types of tasks and comfortable
using them

• Level 3: hardcore programmers and computer
scientists: understand the internals of existing and
implement new data structures

7

We aim
here

The course is about

• Data structures

➢Algorithms

• Java

Why algorithms?

• Algorithm is a sequence of steps that converts input data
into a desired output

• We will get familiar with algorithms for operating on
different data structures

• We will study the basics of Algorithm Analysis, and compare
performance of different data structures for a given task

The course is about

• Data structures

• Algorithms

➢Java

Why Java?

• Simple typed language

• Fully Object-Oriented

• Takes care of memory with Garbage collector

• Contains multiple implementations of ready-to-use Data
Structures

• We will learn which structures are available in the Java
Developer Kit, so you won’t waste time reinventing the
wheel

• But we will also implement our own Data Structures from
scratch

Why Java? Useful on its own

• High-level language –
concentrate on a task
not on the machine

• Building programs from
interacting objects →
large projects with short
schedule: divide work
into components

• Java is used to build
long-lived, reliable,
modifiable software

13

Course Outline

• Java first:

• Principles of object oriented program design

• Algorithms second:

• Sorting and searching

• Recursion

• Analysis

• Basic structures

• Arrays, Lists, Queues, Stacks

• Advanced structures

• Trees, Heaps, Maps, Graphs

Course Mechanics

15

Where is everything!?

• BLACKBOARD: LINK

• Announcements

• Lab submissions

• Your grades

• WEBSITE

• https://cs.oberlin.edu/~mbarsky/classes/cs-151/f2022/

• Links to (virtually) all course content

• Schedule by weeks

https://blackboard.oberlin.edu/ultra/courses/_109899_1/cl/outline
https://cs.oberlin.edu/~mbarsky/classes/cs-151/f2022/

Textbook
Zybook:
https://learn.zybooks.com/zybook/OBERLINCSCI151Fall2022

Participation activities: due before class

https://learn.zybooks.com/zybook/OBERLINCSCI151Fall2022

17

Help

• Discussion forum: Piazza

• Instructor office hours

• Weekly problem-solving sessions with OWLs

• Lab-helper hours

• Individual tutoring

The details and links are in the Course Syllabus:
LINK

https://docs.google.com/document/d/1lW4a5nKxNAh76_Wf6kJul3i4FZsXenpwBAWfAxVpDdY/edit?usp=sharing

Grading

• ~10 programming assignments – 40 %

• Preparation exercises – 10 %

• Class participation – 10 %

• Midterm exam – 20 %

• Final exam – 20 %

Late submission policies

• 3 grace tokens: 3 days late with no penalty
Must fill in the form on blackboard before the due date

• 2 resubmissions
Can earn up to 50% of lost points

Honor code
• The course grade is largely based on programming assignments,

all must be your own work.

• We believe that you are here because you want to become a
skillful Computer Scientist:

Be honorable: do not copy solutions from each other

Plagiarism detection with MOSS (Measure of Software Similarity):
http://theory.stanford.edu/~aiken/moss/

Punishments: zero grade, penalty grade, suspension (no jail
time)

Your typical weekly workflow
• Before coming to class - read 3-5 sections of the book and

answer questions (this does not start before week 3)

• Come to the lecture, listen, ask questions, and engage in at
least 75% of class activities

• Come to the lab and finish at least the first part during lab
time with the help of the instructor (the weekly labs start on
September 12)

• Continue working on the lab and submit your solution on
the due date

• Have fun!

Our first class activity: class profile

Section 10 AM Section 11 AM

https://forms.gle/vis8cj2cA4PMeUvo6
https://forms.gle/QSeWAcciEc7dWRUq8

Hello Java!
https://github.com/mgbarsky/cs151_data_structure_demos/t
ree/main/0.hello

22

https://github.com/mgbarsky/cs151_data_structure_demos/tree/main/0.hello

23

Hello.java

/*

* Hello.java

* Author: CS 151 staff

* Fall 2022

* Prints a welcome message to the terminal

*/

public class Hello {

public static void main(String[] args) {

System.out.println("Hello, CS151!") ;

}

}

24

Edit/Compile/Run cycle

• Edit: Save Java source code in file Hello.java

• Compile: javac Hello.java

• Produces Java bytecode file named Hello.class

• Execute: java Hello

• Searches Hello.class for a method with signature

public static void main(String[])

• Executes that method (if it exists)

25

Hello1.java
/*

* This program prints two first program arguments to the terminal.

*/

public class Hello1 {

public static void main(String[] args) {

System.out.print(args[0] + " ");

System.out.print(args[1]);

System.out.println();

}

}

26

Hello2.java
/*

* This program echoes the arguments provided on the command line.

*/

public class Hello2 {

public static void main(String[] CLParams) {

int i = 0;

while(i < CLParams.length) {

System.out.print(CLParams[i] + " ");

i++;

}
System.out.println();

}

}

27

Notes
• Changed args to CLParams

• Every array knows its size: CLParams.length

• It’s a data member, not a method call

• Java while loop

initialization;

while (continuation) {

statement ; … statement ;

update;

}

• Equivalent to Java for loop

for(initialization; continuation; update)

{ statement ; … statement ; }

28

Hello3.java
/*

* This program echoes all arguments provided on the command line.

*/

public class Hello3 {

public static void main(String[] CLParams) {

for(int i = 0; i < CLParams.length; i++) {

System.out.print(CLParams[i] + " ");

}

System.out.println();

}

}

{} can be omitted
for single-
statement blocks

29

Hello4.java
/*

* This program echoes all arguments provided on the command line.

* It also prints a message suggesting how to properly use the program.

*/

public class Hello4 {

public static void main(String[] CLParams) {

if(CLParams.length == 0) {

System.out.println("Usage: java Hello5 string1 ...");

}

else {

for(int i = 0; i < CLParams.length; i++) {

System.out.print(CLParams[i] + " ");

}

System.out.println();

}

}

}

30

Hello4.java
/*

* This program echoes all arguments provided on the command line.

* It also prints a message suggesting how to properly use the program.

*/

public class Hello4 {

public static void main(String[] CLParams) {

if(CLParams.length == 0)

System.out.println("Usage: java Hello5 string1 ...");

else {

for(int i = 0; i < CLParams.length; i++)

System.out.print(CLParams[i] + " ");

System.out.println();

}

}

}

{} can be omitted for
single-statement blocks

31

Notes

• Multi- and single-line comments: /* .. */ or //

• Code must be wrapped in a class declaration

Everything is (in) a class in Java

• File name should be same as declared class name

• System is a Java object holding another object called out.
out is of type PrintStream

• PrintStreams provide many methods, including
print() and println()

32

Notes (cont.)

• We can pass String values into the program through the args
parameters of the main method

• The parameter args is an array of String

• It is passed to the main method from the command line

• Contains every string on the command line after java Hello

• The name args can be replaced with any other variable name…

• More about String [] args

• Every array has an associated variable (instance variable) called
length, which holds the size of the array

• Array indexing, as in C and Python, starts at 0

• String, unlike int, is a class-based type, not a primitive type

• More on this soon….

To do list

• Register for the course (if not already registered)

We can discuss you individual situation on Wednesday
during office hours

• Locate the course on the blackboard

• Register for the Piazza forum and post something fun

• Carefully read the syllabus and prepare questions

• Read the code for Hello Java

• Optional: read Handout 1 “Java essentials”

