
Playing with bits
Lecture 10.01

Outline

• Shifting bits

• Bitwise operators: &, |, ~,^

• Using bits for yes/no flags

• Applications

• Bit puzzles

Recap: numeric information

• Numerals and numeral systems: symbols and collections of
symbols used to represent small numbers, together with
rules for representing larger numbers

• Most famous numeral system: decimal – basis of all modern
math

2 1 0

2 3 1

hundreds tens ones

2*102 3*101 1*100

200+30+1=231

Rules for bigger numbers
Positions

Symbols:
0,1,2,3,4,5,6,7,8,9

On and off: 2 states

• Computers use correspondence of current in a digital circuit
(on) and absence of it (off) to represent only two digits: 0
and 1

• This is called a binary numeral system

• Basic numerals are 0 and 1, but the rules of creating larger
numbers are the same as for the decimal system:

7 6 5 4 3 2 1 0

1 1 1 0 0 1 1 1

128s 64s 32s 16s 8s 4s 2s 1s

1*27 1*26 1*25 0*24 0*23 1*22 1*21 1*20

128+64+32+4+2+1=231

Symbols:
0,1

Rules for bigger numbers

Binary digits (bits) and bytes

7 6 5 4 3 2 1 0

1 1 1 0 0 1 1 1

128s 64s 32s 16s 8s 4s 2s 1s

1*27 1*26 1*25 0*24 0*23 1*22 1*21 1*20

128+64+32+4+2+1=231

Single bit: on or offOne byte: 8 bits

What is the largest number we can represent
with 8 bits (1 byte)?

Try binary addition

111 101

+110 +111

Or subtraction

100 101

- 1 -11

Binary numbers: multiplication

• Multiplication in the binary system works the same way as in the decimal
system:

101

* 11

101

101

1111

• Note that multiplying by two is extremely easy. To multiply by two,
just add a 0 on the end (same as multiplying by 10 in a decimal
system)

The same:
1*1=1
1*0=0
0*1=0

We think in bytes (8 bits at a time)

• We think about memory in bytes, or ints and doubles, or
even in structs composed of multiple bytes

• The byte is the lowest level at which we can access data in
C: there's no "bit" type, and we can't ask for an individual
bit

When do we want individual bits

• Compress: take one representation and turn it into a
representation that takes less space:

• How many bits do we need to represent any of 26*2
letters of English alphabet?

• Of DNA alphabet?

• Speedup: bit operations are extremely fast

• Encrypt: fast and simple XOR encryption

Thinking about Bits

• The minimum unit of memory is byte => we can't even
perform operations on a single bit

• This means we'll be considering the whole representation of
a number when applying a bitwise operator

• But the goal is to be able to access individual bit: to get and
set its value

unsigned

• We apply bitwise operators to unsigned integral values only,
because some operations for signed numbers are hardware
and system-dependent

• In case of unsigned char you can think about binary
numbers as starting with the most significant bit to the left:

10000000 is 128

00000001 is 1

• We do not care about endianness: all bitwise operators are
implemented to read the numbers from left to right

The left-shift operator <<

• Shifting 1-bits in variable n_places to the left:

[variable]<<[n_places]

00001000 << 2

00100000

• Left shifting is equivalent to multiplying by a power of two:

int mult_by_pow_2 (int number, int power) {

return number<<power;

}

Shifting away

unsigned char c = 128 //(1 byte)

c << 1 = ?

• 128 * 2 = 256, we can't even store a number that big in a
byte

1000 0000 << 1

00000000

The right-shift operator >>

• Shifting 1-bits in variable n_places to the right:

[variable]>>[n_places]

unsigned char c = 8;

• 00001000

b = c>>2

• 00000010

• A bitwise right-shift is equivalent to integer division by 2

• Note that this only holds for unsigned integers; otherwise,
we are not guaranteed that the padding bits will be all 0s

Speedup trick:
dividing by 2n - multiplying by 2n

• Using the left and right shift operators will result in
significantly faster code than calculating 2n and then
multiplying or dividing:

void mult_power_2(unsigned int *num, int pow){

*num = *num << pow;

}

void divide_power_2(unsigned int *num, int pow){

*num = *num >> pow;

}

Bitwise AND &

• The small version of the Boolean AND (&&) works on
smaller pieces (bits instead of bytes, chars, integers…)

• A binary AND & takes the logical AND of two bits in the
same position of two numbers

01001000 &

10111000 =

00001000

• The result is 1 only when both bits are 1 (the fifth bit from
the left)

72 & 184 = 8

Bitwise OR |

• Bitwise OR takes a Boolean OR for each separate bit in the
corresponding position of two numbers

• Only one of the two bits needs to be a 1 for the bit in the
result to be 1.

01001000 |

10111000 =

11111000

72 | 184 = 248

Sample application 1: Bit flags

• You have eight cars (!)

• You want to keep track of which are in use

• Let's assign each of the cars a number from 0 to 7

• To store the state of each car we need a single byte, where
we use each of its eight bits to indicate whether or not a car
is in use

• We'll assume that none of the cars are initially "in use"

unsigned char in_use = 0; //00000000

Checking whether the car at index
5 is in use
• We need to isolate the one bit that corresponds to that car

• Extract the fifth bit from the right of a number: XX?XXXXX

• If we take the bitwise AND of XX?XXXXX and 00100000, then
the result will be 0 if car is not in use, and >0 otherwise

• We get a non-zero number if, and only if, the bit we're
interested in is a 1

XX0XXXXX &

00100000 =

00000000

XX1XXXXX &

00100000 =

00100000

Finding the bit in the n-th position

int is_in_use(int car_num) {

return in_use & 1<<car_num;

}

• Note that shifting by zero places is a legal operation - we'll
just get back the same number we started with.

Setting n-th bit on (car in use)

• If we perform a bitwise OR with only a single bit set to 1 (the
rest are 0), then we won't affect the rest of the number
because anything ORed with zero remains the same (1 OR 0
is 1, and 0 OR 0 is 0)

void set_in_use(int car_num) {

in_use = in_use | 1<<car_num;

}

• For example in case of setting the leftmost bit to 1: we have
some number 0XXXXXXX | 10000000 - the result is
1XXXXXXX

Bitwise NOT ~

• The bitwise complement operator, the tilde, ~, flips every bit

• Trick: The largest possible value for an unsigned number:

unsigned int max = ~0;

• Zero is: 00000000 00000000

• Once we twiddle 0, we get all 1s: 11111111 11111111

• All 1s is the largest possible number

~ vs. !

• Note the big difference between ~ and ! : they cannot be
used interchangeably

• When you take the logical NOT (!) of a non-zero number,
you get 0 (FALSE)

• When you twiddle a non-zero number with ~, the only
time you'll get 0 is when every bit was turned on

Turning the n-th bit off

• We need to leave 1s and 0s in non-target positions
unaffected

• We need to set the n-th bit to 0

• To turn off a bit, we just need to AND it with 0: 1 AND 0 is 0

• If we want to indicate that car 2 is no longer in use, we want
to take the bitwise AND of XXXXX1XX with 11111011

• How can we get that number?

~(1<<position)

Set car state to unused

• The only bit we'll change is the one of the car_num we're
interested in:

void set_unused(int car_num) {

in_use = in_use & ~(1<<car_num);

}

Bitwise Exclusive-Or (XOR) ^

• There is no Boolean operator counterpart to bitwise
exclusive-or

• The exclusive-or (XOR) takes two inputs and returns a 1 only
if both Boolean inputs are different

• Bitwise XOR performs the exclusive-or operation on each
pair of bits

01110010 ^

10101010

11011000

0 0 0

0 1 1

1 0 1

1 1 0

Thinking about XOR

• You have some bit, either 1 or 0, that we'll call A

• When you take A XOR 0, then you always get A back: if A is
1, you get 1, and if A is 0, you get 0

• When you take A XOR 1, you flip A. If A is 0, you get 1; if A is
1, you get 0

0 0 0

0 1 1

1 0 1

1 1 0

Magic properties of double XOR

• If you apply XOR twice

C = A XOR B

D = C XOR B

you get A XOR B XOR B, which essentially either flips every bit
of A twice, or never flips the bit, so you just get back A

Magic trick: swapping numbers with XOR
(no temp variable)

void swap (int *a, int *b) {

*a = *a ^ *b;

// Now, we can recover *a_orig by applying *a XOR *b_orig

*b = *a ^ *b;

// The value originally stored in *a, a_orig, is now in *b

// and *a still stores a_orig ^ b_orig

// This means that we can recover the value of b_orig by applying

// the XOR operation to *a and a_orig. Since *b stores a_orig...

*a = *a ^ *b

}

B = 1001

A = 0101

A = A^B = 1100

B = A^B = 0101

Which is B!A = A^B = 1001

Which is A!

Parity bits!

Very similar to the regular non-
bitwise method
void swap (int *a, int *b) {

*a = *a + *b;

*b = *a - *b; //now contains original *a

*a = *a - *b; //now contains original *b

}

It is in essence the same:

XOR operator complements all bits so they become even

Flipping n-th bit

• XORing bit with 0 results in the same bit

• XORing bit with 1 flips it

• We can just flip the bit of the car we're interested in -- it
doesn't matter if it's being turned on or turned off -- and
leave the rest of the bits unchanged

void flip_use_state(int car_num) {

in_use = in_use ^ 1<<car_num;

}

Sample application 2: XOR
encryption
• Very simple way of disguising a piece of text by XOR-ing

each character with some value

• The same code that can encrypt text can also be used to
decrypt it.

void encrypt(char *message) {

char c;

while (*message) {

*message = *message ^ 31;

message++;

}

}

0 0 0

0 1 1

1 0 1

1 1 0

0 0 0

1 1 0

1 0 1

0 1 1

Sample application 3:
WEXITSTATUS
#define __WEXITSTATUS(status) (((status) & 0xff00) >> 8)

• The unsigned int status passed to waitpid() encodes both
the reason that the child process was terminated and the
exit code

• The reason is stored in the least-significant byte (obtained
by status & 0xff), and the exit code is stored in the next byte
(masked by status & 0xff00 and extracted by
WEXITSTATUS())

Sample application 4. sigset_t

• sa_mask field of struct sigaction is of type sigset_t

• Internally, it may be implemented as either an integer or
structure type

How would you solve these
puzzles?
• Convert DNA string of length 4 (which occupies 4 bytes) into

a single unsigned incharteger (which occupies 1 byte only)

• If you encoded the answers to 32 categorizer questions as a
single unsigned int:

• How would you find the like-minded individuals with 1
operation?

• How would you find best mismatches?

Tricky question: Find out if the
number is a power of 2 in one
operation

• Any power of 2 minus 1 is all ones: (2 N - 1 = 111....b) :

• A power of two looks like this : 01000000 - a string of
zeros, with a lone one

• If you subtract 1 from a power of two, you'll get:
01000000 - 00000001 = 00111111 - a string of ones!

• If you take the bitwise AND of the two values, you get 0

Solution

int is_power_of2(int x) {

return !((x-1) & x);

}

• Note that we have to use the logical NOT, !, instead of the
bitwise complement since the bitwise complement will not
negate non-zero values; it just flips bits.

