
Pointers and arrays
Lecture 03.01

By Marina Barsky

Pointers

• Pointer is an address of a piece of data in memory

• Why pointers?

• Avoid copies

• Share data

Memory addresses

• Memory is laid out in
sequential order. Each position
in memory has a number
(called its address).

• The compiler associates your
variable names with memory
addresses

• In C, you can actually ask the
computer for the address of a
variable in memory. This is
done using the ampersand &

Buffer

Code

Constants

Globals

HEAP

Stack

Memory sections

• If you declare a variable
inside function, it will have
an address in the Stack area

• If you declare a variable
outside the function, it will
have an address in Globals
section

Buffer

Code

Constants

Globals

HEAP

Stack

Memory diagram of a single process

Where y lives?

int y=1;

int main () {

int x=4;

printf (“y lives at address %p\n”, &y);

return 0;

}

Buffer

Code

Constants

Globals

HEAP

Stack

Memory diagram of a single process

1

Prints something like 0xF4240 –
which corresponds to address 1,000,0000

Where x lives?

int y=1;

int main () {

int x=4;

printf (“x lives at address %p\n”, &x);

return 0;

}

Buffer

Code

Constants

Globals

HEAP

Stack

Memory diagram of a single process

4
Prints something like 0x3E8FA0 –
which corresponds to address 4,100,0000

1

Addresses are expressed as
hexadecimal numbers

0xF4240  1,000,0000

0x3E8FA0  4,100,0000

Tells is a
hexadecimal

number

Recap: number systems

2 1 0

2 3 1

hundreds tens ones

2*102 3*101 1*100

200+30+1=231

7 6 5 4 3 2 1 0

1 1 1 0 0 1 1 1

128s 64s 32s 16s 8s 4s 2s 1s

1*27 1*26 1*25 0*24 0*23 1*22 1*21 1*20

128+64+32+4+2+1=231

Decimal system

Binary system

Positions

Positions

Symbols:
0,1,2,3,4,5,6,7,8,9

Symbols:
0,1

Hexadecimal system: base 16

2 1 0

2 3 1

hundreds tens ones

2*102 3*101 1*100

200+30+1=231

Decimal system
Positions

Symbols:
0,1,2,3,4,5,6,7,8,9

2 1 0

0 E 7

256s 16s 1s

2*162 3*161 1*160

14(E)*16+7*1=231

Hexadecimal system

Positions

Symbols:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Hexadecimal system is more
compact
• Colors are represented in RGB format

• Each component has values in range 0-255

• What is the smallest number we can represent with 2

symbols in hexadecimal?

• What is the largest number we can represent with 2

symbols in hexadecimal?

• What is this color: FF0000 00FF00 FF00FF

FF

00

Hexadecimal is a compact
representation of binary numbers

0 1 1 0 1 1 1 0

128s 64s 32s 16s 8s 4s 2s 1s

16 – 255 (0 – F 16s) 0-15 (0 – F 1s)

64+32 = 96 (6*16) 8+4+2 = 14 (E)

6E

One byte can be represented with just 2 symbols

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 A B C D E F

Back to addresses

• Each byte has its own address

• Each integer value can occupy either 4 or 8 bytes (use
sizeof(int) to test for your system)

• If we know the address of the first element of the int array
we can confidently predict the address of the next:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x3E8FA8 0x3E8FAC 0x3E8FB0

3 things to remember about
addresses
int x = 9;

1. Get the address of x and store it in a variable:

int * addr_x = &x; // addr_x now stores some long number – say 4,200,000

2. Given an address – read value stored at this address:

int val = *addr_x; // val is now equal ?

3. Write a new value at a given address:

*addr_x = 99; //x is now equal ?, val is equal ?

Pointer is just a variable that
stores an address
int * ip;

long * lp;

double *dp;

• sizeof(ip) = sizeof(lp) =sizeof (dp)

• Each variable stores an address (unsigned long on 64-bit
systems)

• The address is stored in a variable and the variable itself has
an address:

&ip

Mnemonic rule for pointers

int * ptr

Pointer
type

variable

Stores
memory
address

int type
variable

Stores
integer

int * p;

What type is p?
What type is *p?

Examples of using
pointers in C

C:
Incrementing int by calling increment

void increment (int a) {
a++;

}

int main () {
int a = 5;
increment (a);
printf (“%d\n”, a);

return 0;

}

Passing by value – the copy
of a is created and

processed

Prints ?

C:
Incrementing int by passing an address

void increment (int *p) {
(*p)++;

}

int main () {
int a = 5;
increment (&a);
printf (“%d\n”, a);

return 0;

}

Copy of address of a is
created, but the copy

points to the same location
in memory

Prints ?

Java: no way of incrementing int
by calling increment
static void increment (int p) {

p++;

}

public static void main (String [] args) {

int a = 5;

increment (a);

System.out.println (a);

}

Java solves this problem with
objects
static void increment (MyInt a){

a.value ++;

}

public static void main (String [] args) {

MyInt b = new MyInt();

b.value = 5;

increment (b);

System.out.println(b.value);

}

class MyInt {
public int value;

}

Passes reference to an
object

Arrays are just like pointers

• The compiler associates the address of the first byte with
variable drinks

• You can read elements of an array with subscripts or with
pointer arithmetic:

int drinks[] = {4, 2, 3};

printf("1st order: %i drinks\n", drinks[0]);

printf("1st order: %i drinks\n", *drinks);

printf("3rd order: %i drinks\n", drinks[2]);

printf("3rd order: %i drinks\n", *(drinks + 2));

The same

The same

Pointer arithmetic

int drinks[] = {4,2,3}

0x4 0x5 0x6 0x7 drinks[0] drinks  0x4 *drinks

0x8 0x9 0xA 0xB drinks[1] drinks + 1 = 0x4 + sizeof(int) = 0x8 *(drinks+1)

0xC 0xD 0xE 0xF drinks[2] drinks + 2 = 0x4 + 2* sizeof(int) = 0xC *(drinks+2)

Why arrays really start with 0

int drinks[] = {4, 2, 3};

printf("1st order: %i drinks\n", drinks[0]);

printf("1st order: %i drinks\n", *drinks);

printf("3rd order: %i drinks\n", drinks[2]);

printf("3rd order: %i drinks\n", *(drinks + 2));

• The index is just the number that’s added to the pointer to
find the location of the element.

Arrays and pointers are interchangeable
as function parameters

int func1 (int [] numbers) {

return *(numbers + 3);

}

int func2 (int * numbers) {

return *(numbers + 3);

}

int main () {

int numbers = {1,2,3,4,5};

int forth = func1(numbers);

Int another_forth = func2(numbers);

}

Honey, who shrunk the numbers?

void func1 (int [] numbers) {

printf (“size of array is %ld\n”, sizeof (numbers));

}

int main () {

int numbers = {1,2,3,4,5};

printf (“size of array is %ld\n”, sizeof (numbers));

func1(numbers);

}

Prints 20

Prints 4 or 8

Array variables are not quite
pointer variables: 1
• sizeof(an array) is...the size of an array – the total number of

bytes allocated for an array

• When array is passed as a parameter to the function, the
function receives only array name – which is an address of
the first byte of the array

• Thus the sizeof inside the function becomes the size of the
memory address (4 bytes on 32-bit, and 8 bytes on 64-bit
machines)

• This is called pointer decay

Array variables are not quite
pointer variables: 2
int numbers = {1,2,3,4,5};

int * p_numbers = numbers;

• Pointer variable stores a value of address, but it is another
variable, which has its own address:

&p_numbers≠ p_numbers

• Array variable stores the address of the first byte of the
array. The computer will allocate space to store the array,
but it won’t allocate any memory to store the array
variable. The compiler simply plugs in the address of the
start of the array.

&numbers = numbers

Array variables are not quite
pointer variables: 3
int numbers = {1,2,3,4,5};

int * p_numbers = numbers;

• Because array variables don’t have allocated storage, it
means you can’t point them at anything else.

int numbers2 = {1,2,3,4,5};

int * pp_numbers = numbers2;

pp_numbers = numbers1;

numbers = numbers2;

numbers = pp_numbers;
Illegal !

Summary

• Array variables are different from pointer variables because:

• They cannot point to anything else

• The address of an array variable is not stored in another
variable, but array variable is substituted by the address
of the first byte

• Passing an array variable to the function decays it to the
pointer

