
Signals
Lecture 07.01

Demo code:
https://src-code.simons-
rock.edu/git/mbarsky/signals_demo.git

• Clone the repository

• Compile dots.c into executable called dots

• Run the program

• Press CTRL+C

• What do you think happened?

Signals table

• For each process, in addition to

• Process statistics

• Memory allocation

• File Descriptors table

operating system stores

• Signals table

• The OS is constantly running an event loop to detect any of
the user signals and act according to the table

The O/S controls your program
with signals
• A signal is a short message – just an integer value – which

can be sent to a process by O/S

• When a signal arrives, the process has to stop whatever it is
doing and deal with a signal. Signals interrupt normal
process execution

• The process looks into a mapping table of 32 signal numbers
for the instructions of how to handle each signal

Signals mapping table
Signal Value Action Comment

SIGINT 2 Term Interrupt from keyboard

SIGQUIT 3 Core Quit from keyboard

SIGABRT 6 Core Abort signal from abort(3)

SIGKILL 9 Term Kill signal

SIGSEGV 11 Core Invalid memory reference

SIGALRM 14 Term Timer signal from alarm(2)

SIGTERM 15 Term Termination signal

SIGUSR1 30,10,16 Term User-defined signal 1

SIGUSR2 31,12,17 Term User-defined signal 2

SIGCHLD 20,17,18 Ign Child stopped or terminated

SIGCONT 19,18,25 Cont Continue if stopped

SIGSTOP 17,19,23 Stop Stop process

To see running processes

ps

ps aux

belonging to user:

ps -u user

by program name:

ps aux| grep dots

a = show processes for all users

u = display the process's user/owner

x = also show processes not attached to a terminal

Sending signal to a process

• Terminology for delivering signals is to "kill" a process with
the kill command

• The kill command is poorly named — originally, it was only
used to kill or terminate a process, but it is currently used to
send any kind of signal to a process

• The difference between kill and killall is that kill only sends
signals to process identified by their pid, killall sends the
signal to all process of a given name

kill -<SIGNAL> pid

killall -<SIGNAL> program_name

Sample signals which terminate
the program
• SIGALRM

• SIGINT

• SIGKILL

• SIGUSR1

• SIGSEGV

• …

Signal mapping table

Signal ID Constant name Default action

2 SIGINT _exit()

9 SIGKILL _exit()

10 SIGUSR1 print message, _exit()

11 SIGSEGV print message, _exit()

14 SIGALRM print message, _exit()

19 SIGSTOP _stop()

How the system behaves in response to these signals can
be re-defined in your C program

Signal mapping table

Signal ID Constant name Default action

2 SIGINT _exit()

9 SIGKILL _exit()

10 SIGUSR1 print message, _exit()

11 SIGSEGV print message, _exit()

14 SIGALRM print message, _exit()

19 SIGSTOP _stop()

How the system behaves in response to all signals can be
re-defined in your C program

EXCEPT SIGKILL and SIGSTOP

Redefining signal handler: SIGINT

• The default signal handler for the interrupt signal just calls
the exit() function

• The signal table lets you run your own code when your
process receives a signal

• For example, if your process has files or network
connections open, it might want to close things down and
tidy up before exiting

Example: replace default behavior
with sigaction
• For example, you want O/S to call a function called

diediedie() if someone sends an interrupt signal to your
process:

void diediedie (int sig) {

puts ("Goodbye cruel world....\n");

exit(1);

}

Step 1/3: Define a new handler
function of type void f (int)
void diediedie (int sig) {

puts ("Goodbye cruel world....\n");

exit(1);

}

Step 2/3: Set fields in a variable of
type struct sigaction
struct sigaction action;

action.sa_handler = diediedie;

sigemptyset(&action.sa_mask);

action.sa_flags = 0;

Pointer to a function
to call

The mask adds the signals to be
ignored when the handler is
running – empty mask does not
ignore any other signals

Some additional flags

Step 3/3: register new signal
handler with sigaction()

sigaction (signal_no, &new_action, &old_action);

• signal_no - the integer value of the signal you want to
handle. Usually, you’ll pass one of the standard signal
constants, like SIGINT or SIGQUIT

• new_action - the address of the new sigaction you want to
register (that we just created)

• old_action - if you pass a pointer to another sigaction, it will
be filled with details of the current handler that you’re
about to replace. If you don’t care about the existing signal
handler, you can set this to NULL

struct of type sigaction

Step 3/3: register new signal
handler with sigaction()

sigaction (SIGINT, &action, NULL);

Now compile dots2.c, run, and press CTRT+C:

gcc dots2.c -o dots2 & ./dots2

Summary:
installing custom signal handler
1. Write a new function handler that returns void and has a

single int as a parameter:

void handler (int sig_num);

1. Declare and initialize a new variable of type struct
sigaction

2. Register your new handler using function sigaction ()

Ignoring signals

• Ignoring

• Blocking

Ignoring signals: not even
receiving a signal
struct sigaction action;

action.sa_handler = SIG_IGN;

sigaction (SIGINT, &action, NULL);

Blocking signals with sigaction

• Sometimes you want to block other signals from
interrupting your handler function while it is handling the
current signal

• That way you can have your signal handler modify some
non-atomic state (say, a counter of how many signals have
come in) in a safe way

• So sigaction takes a mask of signals it should block while the
handler is executing

action.sa_mask

Blocking other signals while
handler is running
struct sigaction action;

action.sa_handler = my_handler;

sigemptyset(&action.sa_mask);

sigaddset(&action.sa_mask, SIGINT);

sigaddset(&action.sa_mask, SIGTERM);

sigaction(SIGINT, &action, NULL);

• Here, we’re masking both SIGINT and SIGTERM: if either of
these signals comes in while my_handler is running, they’ll
be blocked until it completes.

Exercise 1: greeting

Infinite loop

#include <stdio.h>

#include <signal.h>

#include <unistd.h>

int main(int argc, char **argv) {

for (;;) {

}

return 0;

}

Moving processes to the
background and foreground
./greeting

ps

./greeting &

bg pid

kill –STOP pid
kill –CONT pid

Killing the process:
many ways
kill –KILL pid #kill hard

kill –STOP pid

kill –TERM pid

kill -INT pid

kill pid #default - SIGTERM

killall greeting

Signal handler:
always void f (int)
void sing (int sig) {

puts ("Happy birthday to you,");

puts ("Happy birthday to you,");

puts ("Happy birthday to you,");

puts ("Happy birthday to you");

}

• How to make it to print a name?

Install new signal handler

struct sigaction action;

action.sa_handler = sing;

sigemptyset(&action.sa_mask);

action.sa_flags = 0;

sigaction (SIGUSR1, &action, NULL);

Test: compile and run

ps

kill –USR1 pid

Making handler slower:
sleep
char * name;

void sing (int sig) {

puts ("Happy birthday to you,");

puts ("Happy birthday to you,");

sleep (20);

printf ("Happy birthday, dear %s,\n", name);

puts ("Happy birthday to you");

}

Blocking SIGINT
while singing
…

sigemptyset(&action.sa_mask);

sigaddset(&sa.sa_mask, SIGINT);

…

SIGPROCMASK
Blocking-unblocking

Blocking signals in critical sections
of code
• You might have a critical section where you don’t want to be

interrupted, but afterwards you want to know what came in

• You can block and unblock signals at any time using
sigprocmask

Blocking/unblocking signals in
code
//install signal handler

sigset_t sigset;

sigemptyset(&sigset);

sigaddset(&sigset, SIGINT);

printf("Blocking signals...\n");

sigprocmask (SIG_BLOCK, &sigset, NULL);

// Critical section

sleep(5);

printf("Unblocking signals...\n");

sigprocmask (SIG_UNBLOCK, &sigset, NULL);

new sig_set

Set signals we want to
intercept

We can block all the signals at once
(except SIGKILL and SIGSTOP)

int main() {

sigset_t block_set;

sigfillset(&block_set); //fills in all possible signals

sigprocmask(SIG_BLOCK, &block_set, NULL);

while (1);

}

Code in unbreakable.c

Adding to Exercise 1

• Let’s add to our program greeting to demonstrate using
sigprocmask

• Let’s say that our program is busy studying for 30 seconds,
and during this time it cannot sing

• After 30 seconds it takes a break and can sing for about 20
seconds.

Code in greeting_extended.c

Example: blocking/unblocking

for (;;) {

puts("Busy studying! Go away.");

// Don't be interrupted by SIGUSR1.

sigset_t block_set;

sigemptyset(&block_set);

sigaddset(&block_set, SIGUSR1);

sigprocmask (SIG_BLOCK, &block_set, NULL);

sleep(30);

printf("Okay I can party now.\n");

sigprocmask (SIG_UNBLOCK, &block_set, NULL);

sleep(20);

}

Using raise() to raise signals inside
the same process
• Sometimes you might want a process to send a signal to

itself, which you can do with the raise() command:

raise(SIGUSR1);

• Normally, the raise() command is used inside your own
custom signal handlers. It means your code can receive a
signal for something minor and then choose to raise a more
serious signal

• This is called signal escalation

• Another way to send signal to the same process:

kill (getpid(), SIGUSR1);

Using signals for communication
between parent and child
if ((pid = fork()) == 0) { /* child */

install_signal_handler(SIGUSR1, sing); //install signal handler

for(;;); // loop for ever

}

else { /* parent */

kill (pid,SIGUSR1); // pid holds id of child

sleep(3);

}

Demo:
signals and fork

Code in: pocking.c

• Write a program that forks two children.

• One child sends a SIGUSR1 signal to the other child
approximately every 2 seconds (use sleep(2) between
signals.).

• The other child does nothing except print out numbers from
1 to 1000. But every time a SIGUSR1 signal arrives, it prints
"quit poking me" to standard error.

• When it's counting is finished, this child exits with the
number of times it was poked as the exit code.

• The parent then prints the number of pokes to the standard
error.

