
Welcome to Linux
Lecture 1.1

What is Linux?
Leo Ufimtsev

Leonidas@RedHat.com

Reference: LINK

mailto:Leonidas@RedHat.co
mailto:Leonidas@RedHat.com
https://docs.google.com/presentation/d/1a_kx5mJkWZWXSIed4X9tmLTpd2nlZH42y570pbJibbI/edit#slide=id.p4

Some history

• 1969 - the Unix operating system by Ken Thompson and Dennis
Ritchie

• Unix became widely adopted by academics and businesses

• 1977 - the Berkeley Software Distribution (BSD) by UC Berkeley.
A lawsuit USL v. BSDi.

• 1983 – the GNU project by Richard Stallman - a free UNIX-like
operating system (GPL). GNU incomplete – no kernel

• 1991- Linus Torvalds, an undergraduate student from Finland,
began a “just for fun” project that later became the Linux
kernel.

Linus Torvalds : Famous first message 1991

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be

big and professional like gnu) for 386(486) AT clones. This

has been brewing since april, and is starting to get ready. I'd

like any feedback on things people like/dislike in minix, as my

OS resembles it somewhat (same physical layout of the file-

system (due to practical reasons) among other things).

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes - it's free of any minix code, and it has a multi-

threaded fs. It is NOT portable (uses 386 task switching

etc), and it probably never will support anything other

than AT-harddisks, as that's all I have :-(.

— Linus Torvalds[14]

This guy also made git btw

mailto:torvalds@kruuna.helsinki.fi

Linux vs Unix

- Unix was often closed source,

companies sued each other over

features.

- Linux was open source, designed for

anyone to modify and add

enhancements.

- Unix was for big commercial servers.

- Linux was initially used for personal

computers, but then turned out to be

useful for all kinds of computers,

especially servers.

https://en.wikipedia.org/wiki/Usage_share_of_operating_systems

OS’s that run on super computers

Desktop vs Server

Linus 2012: “I started Linux as a desktop

operating system. And it's the only area where

Linux hasn't completely taken over. That just

annoys the hell out of me.”

Vision of Open Source

Transparency, Inclusivity, Adaptability

Greater agility (your feature can run on other machines tomorrow)

Faster innovation (Ideas gather momentum quickly by community)

Increased engagement (Everyone is responsive for the whole project, not just

your niche bit of code)

Open Source Software

- Source code made available with a license in which the

copyright holder provides the rights to study, change, and

distribute the software to anyone and for any purpose

Examples of open source

- VLC media player

- Eclipse

- Git

- 83%+ of web servers run Apache or Nginix

- Popular programming languages:

- Python

- OpenJDK Java

- C/C++

- Not open source:

- Oracle Java -> Free to download and use for commercial

purposes, but not allowed to re-distribute.
// Oracle tends to sue friends. Treat with care.

“Oracle will seek a staggering $9.3 billion in 2nd trial against Google” http://arstechnica.com/tech-

policy/2016/03/oracle-will-seek-a-staggering-9-3-billion-in-2nd-trial-against-google/

Microsoft goes open source..

- In 2006, Microsoft refered to Open Source

as “Cancer”. But things have changed

- Microsoft attended Linux Conference 2016

in Toronto

- Open sourced .Net (2015)

(ex: Visual Studio written in .Net)

- Open sourced PowerShell (2016)

- Azure runs Linux

- 20% of Azure’s servers run Linux.

- Microsoft isn’t becoming a fully ‘open

source’ company, (It’s unlikely Windows

will be open source), but they’re building

bridges…

How does open source make money?

- Normally you buy the software and

support is free (maybe not so much

anymore)

- In Open Source you get the software

for free, but you can (optionally) pay

for support and services. Or a service

is free for opensource/personal use,

but requires a fee for commercial use

(e.g GitHub).

- Sort of like you get a car for free, but

you pay for maintenance of the car

and for someone to teach you how to

drive it.

note: Maintenance starts on day 1.

Example: Git

The “Git’ technology is free and open source.

You can run your own git on your own server.

Hosted solutions exist to serve your code for

you, ex GitHub, Bitbucket, GitLab.

Windows / OSX

- Focused on ease of usability,

“Off the shelf software ready for

use”. Very nice desktop U.I.

- Designed for specific hardware.

Runs on limited system

configurations.

- Designed for a specific target

audience. Limited OS

customization.

Linux

- Focused on development

“Tool box and materials, for you

to build your thing”. Very nice

set of development tools.

- Designed to be flexible, to run

on just about anything.

- Designed so it can be

customizable to suit one’s

needs.

- Not that user friendly.

Interchange

existing modules

- Like Lego, build what you

need -> Highly

customizable and flexible.

- Linux provides great

components that you can

glue together and great

tools to put things

together with.

- There is satisfaction in

running something you

build yourself.

Real time systems

that don’t tolerate

delay in processing

(Linux can be

customized to do

so)

Micro systems,

embedded

systems

With limited

resources

Super-scale

computers with

1000’s of

nodes.

Now Linux runs on

almost anything

- Mars rover

- Playstation 3

- NASA control systems

- US department of defense.
- (Humvees have 4 onboard Red Hat servers *1)

- Navy Submarines

- Ikea/Wallmart

- New York stock exchange

- Raspberry pi

- Android

- Google’s entire server fleet runs

Linux. Amazon / Wikipedia etc..

- Cern / ~97% of all super

computers.

*1: https://www.redhat.com/en/about/press-releases/142

When there is a problem

Commercial:

- Complain, Hope, OTL

Open Source:

- Complain, Hope, OTL

OR fix/implement

yourself.

OTL -> Desperation / disappointment

Tux!

- Linus was at a Zoo, where he saw penguins

- Later he found the picture (on the right) on

an FTP site

- Logo was made using GIMP

- (T)orvalds (U)ni(X)" Original image that

Inspired Linus

Forking things

- If community doesn’t agree with your

idea, but you really like your idea, fork it!

- If nobody maintains a project anymore

and you want to revive it, fork it!

- If you want to build a new product based

on existing project, fork it!

Can lead to a lot of variants
542 linux distributions known to public

Most forked from major distros:

- Debian
- Ubuntu

- ChromeOS

- SteamOS

- Android
- Cyanogen OS (ex OnePlus)

- Slackware
- OpenSUSE

- Arch
- Black arch

- Red Hat
- Fedora (Upstream Red Hat, for dev work)

- CentOS (Free Red Hat clone)

- Oracle Linux

https://en.wikipedia.org/wiki/List_of_Linux_distributions

We use this on our

developer machines

https://en.wikipedia.org/wiki/List_of_Linux_distributions

Good ideas transcend their original

hardware/OS/programming language

- Ex: Make

- Made in 1977 by intern Stuart Feldman at Bell

Labs

- Completely re-written over the years, in different

languages

- Still widely used today

- Ex: Emacs

- Made in 1976.

- Transcended original hardware, OS and was

rewritten in a different programming language.

(Has it’s own programming language actually)

- Today so big that it has it’s own StackExhange site

(Sublime, Atom etc don’t..).

A lot of diversity & standards …

Open communication

- Freedom of speech is very important
- In Red Hat there is a “Memo List”, where anyone can

email the entire company & share opinion.

- People express their opinions

- Your reputation (rather than seniority) decides

how people treat you.

- Some people are polite, some are less polite;

> feelings can get hurt.

From Linus Torvalds <> Date Sun, 23 Dec 2012 09:36:15 -0800

Subject Re: [Regression w/ patch] Media commit causes user space to misbahave (was: Re: Linux 3.8-rc1)

Linus cares a lot about Linux. So if someone submits a really bad patch and doesn’t

admit the patch is bad, things can get rough.

But normally he’s quite a nice guy☺.

A few of his quotes:

“I'm always right. This time I'm just even more right

than usual.” - 2005

“I have an ego the size of a small planet, but I'm not

always right [...].” 2007

“The memory management on the PowerPC can be

used to frighten small children.” - 2012

“We don't merge kernel code just because user

space was written by a retarded monkey on crack.” -

2015

“I like offending people, because I think people

who get offended should be offended.” - 2012

https://en.wikiquote.org/wiki/Linus_Torvalds

https://en.wikiquote.org/wiki/Linus_Torvalds

- Use open source programs.
- Find something that bothers you, try to fix it.

- Find a project you’re interested in
- Look at starred projects in GitHub

- Look at things you use

- Work on it
- Learn the process for that project

- Submit patches

- Good experience to put on your CV

Contributing to Open Source

Example: Contribute bugfix to Mozilla

- Takes about 1-2 (maybe 3) weekends to set things up and fix a bug.

- Mozilla has a “Good first bug list”

https://wiki.mozilla.org/Good_first_bug

- Bugs available for most languages (C++/Javascript/java/Python/HTML &

CSS)

- Lots of “Contributing to” articles:

https://developer.mozilla.org/en-

US/docs/Mozilla/Developer_guide/Introduction

- Folks are very helpful, find them on IRC/mailing lists

- General process:
- Find an easy-ish bug, check out source code.

- Ask where to look for bug, people will help you where to navigate in code base

- Fix bug, submit patch. Await feedback. Improve fix from feedback until it’s polished.

https://wiki.mozilla.org/Good_first_bug
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Introduction

Let’s learn some Linux

Scope for the first 2 weeks

• Get familiar with Linux

• Use existing utilities with CLI

• Write simple utilities in C

Scope for the rest of the course

• Write application programs which interact with Linux kernel

• All this using C programming language

Linux operating system

• Open-source

• Written in portable yet highly efficient language

• Built-in networking

• Built-in multitasking

• Rich software development environment

• Open interface to kernel

• Powerful and flexible CLI (command-line interface)

Linux structure

Linux utilities
(tools)

Linux kernel

• Process creation, and scheduling multiple processes

• Memory management: allocation, release

• File system on disk: abstraction over physical disk blocks

• Access to I/O devices: device drivers

• Networking: routing and exchange of messages

• Interface for user programs to perform requests to kernel:
system calls

Linux file system

ls -li

File abstraction

• “Everything is a file.”

• Unified file interface = open, read, write, close for

• regular files

• directories

• devices

• video

• keyboard

• network

Index node - inode

• The actual data for each Unix file is managed by numbered
on-disk data structures called inodes

• One inode is allocated for each file and each directory

• Unix inodes have unique numbers, not names, and it is
these numbers that are kept in directories alongside the
names.

ls -i

Typical Linux file hierarchy

• Everything starts in the “root” directory

• A directory is a file that contains directory entries:

pairs of (child name, inode).

================ ==========================

R O O T <[etc,bin,home] >-- ROOT directory has no name!
/ | \ / | \

etc bin home [passwd] [ls,rm] [user1]
| / \ \ | / \ |
| ls rm user1 | <data> <data> [.bashrc]
| | | |

passwd .bashrc <data> <data>

What is stored in inode

• A list of pointers to the disk blocks that belong to that file or
directory.

• The attributes of the file or directory (permissions, size,
access/modify times, etc.); but, not the name of the file or
directory:

inodes have only numbers, attributes, and disk blocks – not
names. The names are kept separately, in parent directories

What is stored in inodes -
example

i directory What is stored

8 top [world-9, …]

9 world [lang-10, food-11]

10 lang [ENG-12, FRA-16, RUS-17]

11 food [CHN-13, ITA-18]

12 ENG [letter1-14]

13 CHN [noodles-15]

14 letter1 File data blocks

15 noodles File data blocks

(Top)

world

lang food

ENG FRA RUS

letter1 noodles

CHN ITA

File vs. directory inodes

• File inode stores location of disk blocks containing
file data

• Directory inode stores location of disk blocks with
lists of names and inode numbers.

• You must use the inode number from the directory
to find the inode on disk to read its attribute
information; reading the directory only tells you the
name and inode number.

• Hence the difference between ls and ls -l

What is NOT stored in inodes?

i directory What is stored

8 top [world-9, …]

9 world [lang-10, food-11]

10 lang [ENG-12, FRA-16, RUS-17]

11 food [CHN-13, ITA-18]

12 ENG [letter1-14]

13 CHN [noodles-15]

14 letter1 File data blocks

15 noodles File data blocks

(Top)

world

lang food

ENG FRA RUS

letter1 noodles

CHN ITA

The name of a file is NOT
stored in file inode – it is stored
in the parent directory

File data can be recovered
(without name)
• The name and inode number pair in a directory is

the only connection between a name and the thing
it names on disk

• If a directory is damaged, the names of the things
are lost and inodes become “orphan”

• The things themselves may be undamaged. You can
run a file system recovery program such as fsck to
recover the data (but not the names)

Multiple names to the same file:
hard links
• An entry in a directory file which specifies a pair of

(name, inode) is called a hard link.

• There can be several hard links to the same physical
file!

ln bar foo

ls -li

Hard link example

i directory What is stored

11 food [CHN-13, ITA-18]

12 ENG [letter1-14]

13 CHN [noodles-15]

14 letter1 File data blocks

15 noodles File data blocks

16 …

17 …

18 ITA [pasta-15]

(Top)

world

lang food

ENG FRA RUS

letter1 noodles

CHN ITA

cd world/food

ln CHN/noodles ITA/pasta

pasta

2 names of the same file

Tracing inodes example: /home/alex/foobar

From: http://teaching.idallen.com/cst8207/13w/notes/450_file_system.html

What else is stored in inodes?

• Directory inode stores two additional (name,inode)
pairs:

• Itself: . – number

• Parent: .. – number

• Both file and directory inodes store permissions

Directories cannot have hard
links!
• Files may have many names ("links") - but directories can

not!

• Each directory inode is allowed to appear once in exactly
one parent directory and no more.

• This restriction means that every sub-directory only has one
parent directory, and that means the special name ".." (dot
dot) in a sub-directory always refers unambiguously to its
unique parent directory.

• This directory linking restriction prevents loops and cycles in
the file system tree, preventing cases where a sub-sub-
directory might contain a link back up to a parent directory.

ln vs. ln –s

• Storage Space: no new inodes with hard links - in soft links we

create a new inode to store the path to the file

• Performance: directly accessing the disk pointer instead of going

through the path stored in soft link file.

• Renaming target file: the hard link will still work, but soft link

will point to the previous file location.

• Redundancy: with hard link, the data is safe, until all the links to

the file are deleted - in soft link, you will lose the data if the

master instance of the file is deleted.

Programmable shell
Running built-in utilities

Shells

• Special-purpose programs designed to read commands typed

by the user and shell scripts, interpret them, and execute

appropriate programs in response

• Many shells, i.e.:

• Bourne shell (SH)

• Bourne again shell (BASH)

How the shell is collaborating with the
kernel

• Shell:

• accepts command names and arguments as input

• finds the executable

• interprets the arguments

• loads an executable into memory and hands it off to the
OS to run.

• Kernel:

• starts the process of executing the program

How does shell know where to
find an executable
• PATH variable: List of directories to be consulted when

looking up commands specified without path names.

• E.g. you type "cat", it execs "/bin/cat". It finds it by looking
through the path, which is a list of directories including /bin.

sh: PATH=/bin:/usr/bin

sh: PATH=/bin:/usr/bin:.

Recording your session

• script

Working with files

• ls

• pwd

• cp

• mv

• Compress: bzip2, tar

Globbing

• Globbing - process of expanding a non-specific file name containing

a wildcard character into a set of specific file names that exist

• Standard wildcards (globbing patterns)

• * matches any number of any character

• ? matches any one character

• [range] :

• m[a,o,u]m, m[a-d]m

• {} matches at least one (or):

• cp {*.doc,*.pdf} ~

• [!] excluding

• rm myfile[!9]

Sharing files:
permissions

Users belong to user groups (up
to 16-32 groups max)
wolf:~% groups mgbarsky

mgbarsky : instrs csc209h csc343h csc443h cs209hi
cs343hi cs443hi

Permissions as numbers
Number Octal Representation Ref

0 No permission ---

1 Execute permission --x

2 Write permission -w-

3
Execute and write permission: 1 (execute) + 2
(write) = 3

-wx

4 Read permission r--

5
Read and execute permission: 4 (read) + 1
(execute) = 5

r-x

6
Read and write permission: 4 (read) + 2 (write)
= 6

rw-

7
All permissions: 4 (read) + 2 (write) + 1
(execute) = 7

rwx

chmod

• chmod 755 <filename>
– 3 numbers between 0 and 7, the octal value for that category of

user

– Quiz — what is the command to set the permissions of the file
classlist to be world readable but writeable only by the file
owner and members of the group.

• Or using:
– chmod u+rwx

– chmod go-x

– chmode a=x

– adds or removes permissions for those categories of users

-rwxr-xr-x

Setting permissions

Special permissions: root

• There is a special user called root, which have all
the permissions for all the files in the system

• sudo

File Permissions

chmod (change mode)

• Changes the permissions (mode) on an existing
inode (file, directory, etc.)

ls -lid (list structure, long version, inode, directory)

• Shows the permissions of an inode

Working with file contents

• cat

• less

• head

• tail

• sort

• uniq

• wc

• comm

• diff

• grep

• cut

grep

• Searching plain-text data sets for lines matching a regular
expression.

• Main uses:

• grep –x matches entire line

• grep –v matches all lines which do not contain a pattern

• grep ^pattern – matches lines which start with ‘pattern’

grep examples

wolf:~/w2% grep craig faculty

wolf:~/w2% grep Craig faculty

Craig, Michelle

Berns, Craig

Craigin, Pete

wolf:~/w2% grep ^Craig faculty

Craig, Michelle

Craigin, Pete

Reg. expressions for grep
^ (Caret) = match expression at the start of a line, as in ^A.

$ (Question) = match expression at the end of a line, as in A$.

\ (Back Slash) =
turn off the special meaning of the next character, as in
\^.

[] (Brackets) =
match any one of the enclosed characters, as in [aeiou].
Use Hyphen "-" for a range, as in [0-9].

[^] =
match any one character except those enclosed in [], as
in [^0-9].

. (Period) = match a single character of any value, except end of line.

* (Asterisk) =
match zero or more of the preceding character or
expression.

\{x,y\} = match x to y occurrences of the preceding.

\{x\} = match exactly x occurrences of the preceding.

\{x,\} = match x or more occurrences of the preceding.

Output redirection

• If the notation > file is appended to any
command that normally writes its output to
standard output, the output of that command will
be written to file:

who > users

Input redirection

• The commands that normally take their input from
standard input can have their input redirected from
a file:

wc -l users

wc -l < users

Processes

Kernel starts a process for each program

To see all the processes:

ps

PID TTY TIME CMD

26357 pts/5 00:00:00 tcsh

26558 pts/5 00:00:00 bash

32624 pts/5 00:00:00 ps

Process groups and pipelining

• Connect processes, by letting the standard output
of one process feed into the standard input of
another. That mechanism is called a pipe.

• Connecting simple processes in a pipeline allows to
perform complex tasks without complex programs.

$ls -l | sort -k5n | less

Displays files in current directory sorted by file size

ls -l command – output fields:
total
wolf:~/w2% ls -l

total 8

-rw-r--r-- 1 mgbarsky instrs 94 Apr 11 10:20 faculty

-rw-r--r-- 1 mgbarsky instrs 76 Apr 11 10:20 hello.c

wolf:~/w2% ls -s

total 8

4 faculty 4 hello.c

wolf:~/w2%

Total number of disk
blocks used by all files in
this directory

ls -l command – output fields: col 1

wolf:~/w2% ls -l

total 8

-rw-r--r-- 1 mgbarsky instrs 94 Apr 11 10:20 faculty

-rw-r--r-- 1 mgbarsky instrs 76 Apr 11 10:20 hello.c

File permissions

ls -l command – output fields: col 1

wolf:~/w2% mkdir a

wolf:~/w2% ls -l

total 12

drwx------ 2 mgbarsky instrs 4096 May 15 14:28 a

-rw-r--r-- 1 mgbarsky instrs 94 Apr 11 10:20 faculty

-rw-r--r-- 1 mgbarsky instrs 76 Apr 11 10:20 hello.c

File type

-: regular file
d : directory
s : socket
p : pipe
D : Door
l : symbolic link etc.

Lynux considers all regular files with x
permissions executable

x permission for directory means you can search
subfolders in the current directory

ls -l command – output fields: col 2

wolf:~/w2% mkdir a

wolf:~/w2% ls -l

total 12

drwx------ 2 mgbarsky instrs 4096 May 15 14:28 a

-rw-r--r-- 1 mgbarsky instrs 94 Apr 11 10:20 faculty

-rw-r--r-- 1 mgbarsky instrs 76 Apr 11 10:20 hello.c

wolf:~/w2%
Number of hard
links to the
current file in the
entire system –
link count

You can delete regular file
only if link count becomes
0 after deleting

ls -l command – output fields: col 3

wolf:~/w2% mkdir a

wolf:~/w2% ls -l

total 12

drwx------ 2 mgbarsky instrs 4096 May 15 14:28 a

-rw-r--r-- 1 mgbarsky instrs 94 Apr 11 10:20 faculty

-rw-r--r-- 1 mgbarsky instrs 76 Apr 11 10:20 hello.c

wolf:~/w2%
User

ls -l command – output fields: col 4

wolf:~/w2% mkdir a

wolf:~/w2% ls -l

total 12

drwx------ 2 mgbarsky instrs 4096 May 15 14:28 a

-rw-r--r-- 1 mgbarsky instrs 94 Apr 11 10:20 faculty

-rw-r--r-- 1 mgbarsky instrs 76 Apr 11 10:20 hello.c

wolf:~/w2%

User group

ls -l command – output fields: col 5

wolf:~/w2% mkdir a

wolf:~/w2% ls -l

total 12

drwx------ 2 mgbarsky instrs 4096 May 15 14:28 a

-rw-r--r-- 1 mgbarsky instrs 94 Apr 11 10:20 faculty

-rw-r--r-- 1 mgbarsky instrs 76 Apr 11 10:20 hello.c

wolf:~/w2%

Size of directory or file in
bytes – in some systems
allocates at least 1 block for
the directory

ls -l command – output fields: col 6

wolf:~/w2% mkdir a

wolf:~/w2% ls -l

total 12

drwx------ 2 mgbarsky instrs 4096 May 15 14:28 a

-rw-r--r-- 1 mgbarsky instrs 94 Apr 11 10:20 faculty

-rw-r--r-- 1 mgbarsky instrs 76 Apr 11 10:20 hello.c

wolf:~/w2%

Last modified

ls -l command – output fields: col 7

wolf:~/w2% mkdir a

wolf:~/w2% ls -l

total 12

drwx------ 2 mgbarsky instrs 4096 May 15 14:28 a

-rw-r--r-- 1 mgbarsky instrs 94 Apr 11 10:20 faculty

-rw-r--r-- 1 mgbarsky instrs 76 Apr 11 10:20 hello.c

wolf:~/w2%

File name

At home

Recording your session

• script <session1>

• To stop recording: exit

To get help

• man <program_name>

• <program_name> --help

• info coreutils '<program_name> invocation'

Working with files

• ls

• pwd

• cp

• mv

• rm

• Compress: bzip2, tar

• wget <url>

Working with file contents

• cat

• less

• head

• tail

• sort

• uniq

• wc

• comm

• diff

• grep

• cut

• file (dos2unix, unix2dos)

• vimtutor
– ESC

– :q

