
CMPT 321
Introduction to databases

Fall 2017
Marina Barsky

The data world

• We aggressively acquire data and keep it forever

• The real freedom is when we have access to all the data

• The goal – preserve knowledge and make it accessible to
everyone

• More ambitious goal – enough data that we can simulate
real world and understand its behaviour from these
simulations

Types of data: music

Types of data: geodata

Types of data: bio-sequences

“Big data”?

• Basic demographic information—age, sex, income, ethnicity,
language, religion, housing status, and location—of every
living human being on the planet can be stored in 100GB

• This would create a table of 6.75 billion rows and 10
columns.

• Should that be considered “big data”?

From “Pathologies of Big Data” Article by Adam Jacobs in the ACM

Communications, August 2009.

Data Units

K Kilo

M Mega

G Giga

T Tera

P Peta

102

Roughly:

202
302
402
502

310
610
910

1210
1510

Example: Volume

• The web
• 20+ billion web pages x

20KB = 400+ TB

• One computer can read
30-35 MB/sec from one
disk – 4 months just to
read the web

The web

Example: Variety

• NSF Ocean Observatories
Initiative
• Data is collected from

satellites, vessels, censors

• 1000 km of optic cable on the
seafloor with thousands of
chemical, physical, biological
sensors

• 50 TB/year of different data
types

Ocean Sciences

Example: Velocity

• Large Synoptic Survey
Telescope (LSST)
• 40 TB/day

• 40+ PB in its 10 year lifetime

• 400 mbps sustained data exchange
rate between Chile and NSCA

• Largest database in the
world: World Data Centre for
Climate (WDCC):
• 100 TB of sensor data/year

• 110 TB of simulation data/year

• 6PB of additional information stored
on tapes

Astronomy

Big Data: 4V

•Volume

•Variety

•Velocity

•Veracity: can we trust this data?

Evolution of Science

• Empirical Science – collect
and systematize facts

• Theoretical Science –
formulate theories and
empirically test them

• Computational Science –
run automatic proofs,
simulations

• e-Science (Data Science)
– collect data without clear
goal - and test theories, find
patterns in the data itself

Science is about asking questions

Traditionally: “Query the world”

Data acquisition for a specific hypotheses

Data science: “Download the world”

Data acquired en masse in support of future

hypotheses

Computational challenge

The cost of data acquisition has dropped

The cost of processing, integrating and analyzing data is
the new bottleneck

“…the necessity of grappling with Big Data, and the desirability
of unlocking the information hidden within it, is now a key
theme in all the sciences – arguably the key scientific theme of
our times”

F. Diebold

Efficient data manipulation

Poll: How much time modern scientists spend
“handling data” as opposed to “doing science”?

Mode answer: 90%

“the Next Wave of InfraSress” (J. Mashey)

Raw data ≠ knowledge!

We need to store data in a system that provides:

• Non-volatile reliable storage

• Organized for efficient queries of any kind

A) Yours B) Partner’s C) Both D) Neither E) ???

Is a File System a candidate?

Thought Experiment 1:

• You and your project partner are editing the same file.

• You both save it at the same time.

• Whose changes survive?

Thought Experiment 2:

• You’re updating a file.

• The power goes out.

• Which changes survive?

A) All B) None C) All Since Last Save D) ???

Is a File System a candidate?

Is a File System a candidate?

Q: How do you write
programs over a
subsystem when it
promises you only “???” ?

Is the WWW a candidate?

• Crawler indexes pages on the web and we can search for
pages by keyword

• Source data is mostly “prose”: unstructured and untyped

• Public interface is search only:

• can’t modify the data

• can’t get summaries, complex combinations of data

• Few guarantees provided for freshness of data, consistency
across data items, fault tolerance, …

“Search” vs. Query

• Try actors who donated to presidential candidates in your
favorite search engine.

• Now try engineers who donated to presidential candidates

If it isn’t “structured”, it can’t be searched!

A “Database Query” Approach
Actors dataset Donors dataset

“Yahoo Actors” JOIN “FECInfo”

Q: Did it Work?

(From Telegraph research group @Berkeley)

*

To have a real data management
system we need to solve problems of:

• Scale: data exceeds main memory, specialized (quite
complex) EM algorithms, efficiently implemented

• Sharing: using the same data by multiple user programs
simultaneously (concurrently)

• Fault-tolerance: avoiding data loss

• Consistency: clean consistent snapshots of data, reinforcing
data constraints

Our dream system:

1. Allows to create new data collections and specify their schema (logical

structure of the data) in a simple language

2. Enables data query and modification, using a simple language

3. Supports intelligent storage of very large amounts of data.

a. Enforcing constraints (to not allow the insertion of two different

people with the same SIN).

b. Efficient access to the data for queries and modifications (Indexes).

4. Controls access to data from many users at once (concurrency), without

allowing “bad” interactions that can corrupt the consistency.

5. Recovers from software failures and hardware crashes.

Such system exists:

Database Management System (DBMS) - complex
software for storing and managing databases.

Database management system

History of DBMS

1980

1990

2000

2010

Network databases

1970

• Insertions, updates, and deletions are complex and
inefficient

• Lack of Data Independence: a change in structure
demands a change in the application

• Unanticipated queries cannot be performed efficiently

Order

Pen

Pencil

Eraser

Customer

Sales rep

History of DBMS

1980

1990

2000

2010

Hierarchical databases

1970

• Data is repetitively stored in many different entities.

• Slow search – scan entire model from top to bottom

• One-to-many relationships only

Order Pen

Pencil

Eraser

Customer Sales rep

Order

Pencil

master

detail

History of DBMS

1980

1990

2000

2010

Relational

databases

God made the integers;

all else is the work of man.
L. Kronecker, 19-th century
mathematician

Codd made relations;

all else is the work of man.
R. Ramakrishnan

History of DBMS

1980

1990

2000

2010

Relational

databases

Think in terms of tables, not bits on disk.

“Activities of users at terminals should
remain unaffected when the internal
representation of data is changed.”

• Pre-relational: if your data changed,
your application broke

• Early RDBMSs were buggy and slow,
but required only 5% of the
application code

Ted Codd’s vision

• A database system should present the user with a view of
data organized as tables (also called relations).

• Behind the scene there could be a complex data structure
that allows rapid response to a variety of queries. But the
user would not be concerned with the storage structure.

• Queries could be expressed in a very high-level language,
which greatly increases the efficiency of database
programmers.

Relational databases: key idea

Programs that manipulate tabular data exhibit an
algebraic structure allowing reasoning and
manipulation independently of physical data
representation

Can apply relational algebra!

Algebraic optimization: symbolic
reasoning on integers
N = ((z*2) + ((z*3) + 0))/1

Algebraic laws:

1. Identity: x+0 = x

2. Identity: x/1 = x

3. Distributive: ax + ay = a*(x+y)

4. Commutative: x*y = y*x

Apply rules 1,3,4,2:

N = (2+3)*z

One operation instead of five, no division.

Closure: each operation returns the value of

the same type, so operations can be chained

Same idea works with relational algebra!

Algebra of tables

Selection σ

Projection π

Join ⋈

Cross-product x

Union U
Difference –

Intersection ∩

Case in favor of Relational
Database Management Systems
RDBMS provides:

• Physical and logical data independence

• Automatic indexing

• Efficient implementation of RA operators

• Query optimization

• Support and guarantees of atomic transactions

Imagine adding all these features yourself for your next data
product!

Early applications of RDBMS’s

• Airline reservation systems

• Banking systems

• Corporate records

Data composed of many small items, and various queries and
modifications on them.

Example: RDBMS vs Files

• Suppose we have stored in a file called Employees records
having the fields

(emp_code, name, dept_code)

• and in another file called Departments records having the
fields:

(dept_code, dept_name)

Suppose now that given an employee, for instance with name
“Smith”, we want to find out what department is he working
for.

Files: solution

In the absence of DBMS we have to write a program
which will:

1. open the file Employees

2. declare a variable of the same type as the records stored in the file

3. scan the file:

while the end of the file is not yet encountered,

assign the current record to above variable.

if the value of the name field is “Smith” then remember
the value of the dept_code field. Suppose it is “100”

4. search in a similar way for a record with “100” for the dept_code in
the Department file.

5. print the dept_name when successfully finding the dept_code.

Very painful procedure

Modern RDBMS solution

Compare it to the short and elegant SQL query

SELECT dept_name

FROM Employees, Department

WHERE Employees.name="Smith" AND
Employees.dept_code = Department.dept_code

Example: Query optimization
SELECT Accounts.balance

FROM Customers, Accounts

WHERE Customers.SIN = Accounts.SIN AND Customers.name = 'Sally';

This query - if executed naively:

• Pairs tuples of tables specified in the FROM-clause into a new table R.

• Chooses from R the tuples satisfying the condition in the WHERE clause.

• Produces as answer only the values of attributes in SELECT-clause.

The performance would be terrible, because of the usually enormous
(quadratic) size of all pairs of tuples.

Example: Query optimization
SELECT Accounts.balance

FROM Customers, Accounts

WHERE Customers.SIN = Accounts.SIN AND Customers.name = 'Sally';

Query processor will cleverly create a plan which inexpensively:

• Retrieves the tuple for “Sally” and gets the SIN number

• Retrieves the account tuples for this SIN number

RDBMS: data consistency

• Write Ahead Logging – full
recovery from failures

RDBMS: efficient query
implementation
• Implements each operation

using the most efficient EM
algorithm

• Computes the best way to
carry out a requested
operation using relational
algebra and statistics

RDBMS: concurrent execution

• Assures that several queries
running simultaneously do
not interfere with each other
and that the system will not
end up in an inconsistent
state

RDBMS is a very complex system

Good news: it has been already implemented for you
to use

Current Trends: Big Data

source: http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

Current Trends: Lots of traffic

source: http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

Current Trends: Cloud Computing

source: http://www.profitbricks.com/what-is-iaas

http://www.profitbricks.com/what-is-iaas

Scaling up

Two alternatives:

• Bigger servers

• Lots of little boxes in massive grids

Parallelism is not natural for
relational databases
• Vertical: normalization, splitting into smaller tables

• Horizontal: splitting single table into multiple sets of rows

• SQL designed to run as a single node

• Both vertical partitioning and horizontal partitioning
introduce performance bottlenecks

History

1980

1990

2000

2010

Relational databases

NoSQL databases

Aggregate databases:

Key-value
Document

Wide-column

Graph databases

String databases

Future?

1980

1990

2000

2010

Relational databases

NoSQL databases

Polyglot persistence

When to use RDBMS

• Fast application development
• Data integrity and security is important
• Loss of data is unacceptable
• Concurrent data modification: by multiple users
• Data can be easily modeled as relations

When to consider alternative data
stores
• String databases

• Audio, video databases

• Document databases

• Graph databases

Many facets of Database studies

• Logical design
• What kinds of information to store?

• How to model data?

• How are data items connected?

• Database programming
• How does one express queries on the database?

• How is database programming combined with
conventional programming?

• Database system implementation
• How does one build a DBMS

In this course we explore database
world from the point of view of:

Designer

Developer

User

Textbook

"Database Systems: The Complete
Book"

by H. Garcia-Molina,

J. D. Ullman,

and J. Widom,

2nd Edition.

Parts I and II and some topics from
Part IV

Deliverables

• Weekly homeworks: 30%

• Midterm exam: 10%

• Final project: 30% *

• Final exam: 30% *

*You need to score at least 50% on the final project and on the exam in order

to pass the course

Google classroom

• Class code: mj2w0h

Sample DBMSs used in this course

• SQLite

• PostgreSQL

• Spark on IBM datascientist workbench:

https://datascientistworkbench.com/

You have to know how to program in Java and Python

https://datascientistworkbench.com/

