CMPT 321
FALL 2017

Alternative data models

Lecture 08.01
By Marina Barsky

Relational model has many
oenefits

* Logical data independence: views
* Ad hoc queries

* Mature technologies:
* Disk algorithms
v'Indexes
* Query optimizer
v'Concurrent transactions
* Write-ahead logging

Semantics — the study of meaning

We like mushrooms

Mushrooms scare Ann

e The same word - different semantics

* People deduce meaning implicitly: from the rules of the
language plus context

 Computer program needs explicit sematics

Case study.
Restaurant search

Data about restaurants:
prices
location
cuisine

hours

Single-table model: spreadsheets

Restaurant Address Cuisine | Price | Open

Deli Llama Peachtree Rd | Deli S Mon, Tue, Wed, Thu, Fri

Peking Inn Lake St Chinese |SSS | Thu, Fri, Sat

Thai Tanic Branch Dr Thai SS Thu, Fri, Sat, Sun

Lord of the Flower Ave Fast Food | SS Tue, Wed, Thu, Fri, Sat,

Fries Sun

Wok This Way | Second St Chinese |S Mon, Tue, Wed, Thu, Fri,
Sat, Sun

Award Dorfold Fast Food | S Mon, Tue, Wed, Thu, Fri,

Wieners Mews Sat

How do we know the meaning of word ‘Chinese’?

Semantics of a single table

* The row and column explains what the value means to a
person reading the data

* The fact that Chinese is in the row Peking Inn and in the
column Cuisine tells us that “Peking Inn serves Chinese
food.”

* You know this because you understand what restaurants
and cuisines are and because you’ve previously learned how
to read a table

Limitations of a single table model

* Multi-valued columns are not searchable:
find the restaurants that will be open late on Friday night?

* Connecting more tables referencing the same data: our
friends’ reviews of the restaurants

no easy way to search across both documents to find
restaurants near our homes that our friends recommend

Relational model

Restaurant

Cuisine

Restaurant (id, name, address, price)
Cuisine (id, name)
Interval (id, day, open, close)

Offers (RestaurantID, cuisinelD)

Q//

Interval

@ Open (RestaurantID, IntervallD)

Relational model: tables

Restaurant RestaurantCuisine Cuisine

id | Name Address Price RestID | CuisinelD id | Name
1 | DeliLlama Peachtree Rd S 1 1 1 | Deli
2 Peking Inn Lake St SSS 2 2 2 | Chinese
Intervals Hours 3 | Thai
id Day |Open |Close RestID | IntervallD 4 | Fast food
1 Mon |11 16 1 1

2 Tue |11 16 1 2

3 Wed | 11 16 1 3

4 Thu |11 19 1 4

5 Fri 11 20 1 5

6 Thu |5 22 2 6

7 Fri 5 23 2 7

8 Sat |5 23 2 8

Benefits: no redundancy

* Ad hoc queries: Find all the restaurants that will be open at
10 p.m. on a Friday

SELECT R.Name, C.Name, |.Open, |.Close

FROM Restaurant R, Cuisine C, Intervals |,
RestaurantCuisine RC, Hours H

WHERE R.id = RC.RestaurantIlD AND RC.CuisinelD=C.ID

AND R.id=Hours.RestaurantID AND l.id = H.intervallD

AND I.Day="Fri"

AND |.Open<22

AND I.Close>22

Relational model: tables

Restaurant RestaurantCuisine Cuisine
id | Name Address Price RestID | CuisinelD id | Name
1 | DeliLlama Peachtree Rd S 1 1 1 | Deli
2 Peking Inn Lake St SSS 2 2 2 | Chinese
Intervals Hours 3 |Thai
id Day |Open |Close RestID | IntervallD 4 | Fast food
1 Mon | 11 16 1 1
2 Tue |11 16 1 2
3 Wed | 11 16 1 3
4 Thu |11 19 1 4 How do we know
5 i |11 20 1 5 the meaning of
6 Thu |5 22 2 6 tuple (1,1)in
- e 3 » . RestaurantCuisine?
3 Sat 5 23 2 8

Semantics of relational model

 The meaning of each value is described by the schema

e Each datum is labeled with what it means by the table in
which it appears and by the column

* We convey this semantics to the computer program: we do
not need to define what the restaurant is, but we can still
get a list of restaurants with given properties

Extending scope of our search

web app

* Our restaurant search app is up and running

 We receive a new data to handle: Bars

Bar
Name Address DJ Specialty drink
The bitter end 14t avenue | No Beer
Peking Inn Lake St No Scorpion Bowl
Hammer Time Wildcat Dr Yes Hennessey

Integrating new data with existing
model

* We cannot completely detach bars from restaurants and
store them in a separate table:

* Many restaurants serve as bars later in the evening
e Bars and restaurants have common properties
 Someone might want to query across both tables

Bar
Name Address DJ Specialty drink
The bitter end 14t avenue | No Beer
Peking Inn Lake St No Scorpion Bowl
Hammer Time Wildcat Dr Yes Hennessey

This cannot be a separate table!

Subclasses?
(Cid) (name>

to Intervals

Open

to Cuisine

/isa\

Venue

Restaurant

* Venue (id, name, address)

e RestaurantCuisine (id, cuisinelD)

* Bar (id, DJ, specialty)

Bar

Constantly evolving schema

 Relational databases: Scop,
* Well-defined data models
* Know upfront that schema will be stable
* Typical usage pattern

S S
* Data integration across the Web: renta/Sp

e Rapidly changing types of data:
e Cannot predict how data will be evolving
* Do not know how data will be usedused

Changing schema each time is
expensive!

* Schema migration:
* Load data from old tables into new tables
* Update all triggers, functions and procedures
e Update all queries and views
e Update web site code

Techniques for schema migration:
L ORM (Hibernate)

1 Stored procedures
Q..

Complexities and bugs ...
Downtime...

Semantics: very complex schemas

* Incredibly complicated schemas which include different data
types

e Hundreds or thousands of inter-connected entities

* Understanding meaning of data is hard -> impossible

Movies and movie goers E/R

varumurn

personlD

Directors MovieGoers

yearsOfExp dNetWorth
- hasCard

& 3 s
SeesMovie MovieVisits
RewardCards .,
\ J
visitDate ticketPrice
cardNum balance activeDate e

r

b
theatrelD theatreName numScreens
theatrelD

\::/

paymentType

Showings

The:
awardName yearWon movieBudget
s day time ticketPrice screenNum T

5.0, [X a oY T ¥
L K=K AR==K 1 '
PO ! S E
ORDERHISTORY USERTOLG)
K o i SOTYPE
PK D PK D ' 1 v
= B FK1,13,21 | CARRIERID 1 H PK |Q X T
E FK1,16,12 | ORDERTYPEID FK2,13,12,U1 | USERID FK3,111,122 $ 1
n ORDERID FKLI14,/1,U1 | LOCATIONGROUPID L_|og FK5114.123 | PAYMENTTERMSID Q u1 |NAME *
FK2,17,I5 | USERID DEFAULTFLAG REMITCOUNTRYID
DATECREATED REMITSTATEID CURRENCY CALCATEGORY
COMMENT FK9,116,124 | SHIPTERMSID PK D PK D
| " TABLEID SHIPTOCOUNTRYID = —
3 RECORDID SHIPTOSTATEID vl NAME uiz NAME
FK7,118,125 | TYPEID CODE U1 PARENTID
FK6,117,126 | STATUSID H RATE READONLY
FK11,119,127 | VENDORID ACTIVEFLAG VENDORSTATUS DATECREATED
'} TRRSTATE USERNAME FKL,12,11 | LASTC) DATELASTMODIFIED
SR uLn3 Num DATECREATED Y PK |ID FK1,13,11 | LASTCHANGEDUSERID
D 13, AS
PK ‘g CALEVENT 120 VENDORSO DATELASTMODIFIED COLOR
b 6 VENDORCONTACT SYMBOL u1 |NAME PK
REMITTONAME
USERGROUPREL u1 ‘NAME s 6 £ s
PK D 1 NAME REMITCITY d fl
H LOCATION REMITZIP & ' i
FK1,U1,13,12 | USERID i 2 DATESTART BUYER D, A D, @ T R
FK2,U114,11 | GROUPID i n DATEEND SHIPTONAME CUSTOMER VENDOR
' NOTE SHIPTOADDRESS
o ! DATECREATED SHIPTOCITY PK D PK D ‘
O DATELASTMODIFIED SHIPTOZIP 4
FK2,15,13 | LASTCHANGEDUSERID DELIVERTO DATECREATED FK1,17,13 | ACCOUNTID PK
ALLDAY REVISIONNUM =109 DATELASTMODIFIED FK7,16,18 |STATUSID +
KR % FKLI6 | CALCATEGORYID DATELASTMODIFIED FK1,110,18 | ACCOUNTID H FK4,19 | DEFAULTPAYMENTTERMSID 21 u1
e 17 DATECREATED FK5,16,/11 | STATUSID FK5,110 | DEFAULTSHIPTERMSID HEZSHEXEY
i 19 DATEISSUED [O< FKe,112 DEFAULTPAYMENTTERMSID FK2,111 | DEFAULTCARRIERID
b PK D 16 DATECONFIRMED FK7,113 DEFAULTSHIPTERMSID 15,U1 NAME TAXRATETYPE
10 DATEREVISION 13,U1 NAME DATEENTERED
FK4,110,18 | ORDERTYPEID 18 DATEFIRSTSHIP LASTCHANGEDUSER DATELASTMODIFIED PK |m
o ORDERID 15 DATECOMPLETED TAXEXEMPT i LASTCHANGEDUSER
FK1,13,111 | CARRIERID FK8,115,128 | QBCLASSID TAXEXEMPTNUMBER H NOTE u1 |NAME
FK2,16,112 | FOBPOINTID RECEIPTITEMTYPE RECEIPTITEMSTATUS FK4,112,129 | LOCATIONGROUPID ?" NOTE SYSUSERID
FK5,113,19 | STATUSID H SYSUSERID ACTIVEFLAG $
SHIPTOID PK |g PK |Q 14 CUSTOMERSO FK8,114,17 | TAXRATEID ACCOUNTINGID '
INVOICEID ACTIVEFLAG ACCOUNTINGHASH
CARTONCOUNT u1 |NAME ut |NAME FK10,i1 TAXRATEID ACCOUNTINGID LEADTIME
1 DATECREATED TOTALTAX ACCOUNTINGHASH B4 ACCOUNTNUM
15 DATESHIPPED TAXRATENAME DEFAULTSALESMANID URL P
INVOICENO TOTALINCLUDESTAX 18,u2 NUMBER CREDITLIMIT PK [}
INVOICEDFLAG FK2,12 CURRENCYID FK2,115 DEFAULTCARRIERID MINORDERAMOUNT -Of
NOTE FHA--- CURRENCYRATE CREDITLIMIT FK62 | TAXRATEID u1 NA
FK3,114,17 | LOCATIONGROUPID T a FK4,IS,UL,19 | PARENTID FK3,11 CURRENCYID H O< DEF
ut BILLOFLADING JOBDEPTH CURRENCYRATE FKA415 | VEN
OWNERISFROM POITEMTYPE ! URL POSTIYRE -OH DA
INVOICEAMOUNT PIPELINEACCOUNTNUM ¢ zﬁ DA
YPES INVOICEAMOUNTPAID o PK ‘m FK9,12 DEFAULTSHIPSERVICEID PK |g -OH ACC
DATELASTMODIFIED POSTPO FK3,11 CURRENCYID ACC
PK (1D U1 [NAME CURRENCYRATE U1 |NAME -OH ACT
FK6,11 SHIPPEDBY T PK b FK3,13,6 [TYP
FK7,12 UPSSERVICEID CODE i 5 & 58= Ot DES
PTION SHIPMENTIDENTIFICATIONNUMBER DESCRIPTION FKLIGI3: | POID T : -l \ FKLI217 | TAX
- T r 14 POSTDATE g é i X L o UNI
+ i} i Bl ety R A v A ot
= C h T T EXTTXNHASH UM LOEATION £CS% FK211 | ORI
Q Q QQ EXTTXNNUMBER PK) DS P D PK D
EXTREFNUMBER |
FIEAION UPSREVRNES IEMENE 2 DATEPOSTED FK2,12,14,113 | PARTID FK3,14,13 | TYPEID FK3,19,16 |STATUSID
PK D PK D 1 DATECREATED FK3,15,13,114 | POID PARENTID FK2,110,15 | ORDERTYPEID
DATELASTMODIFIED FKS5,110,115 | TYPEID 12,1 NAME 1 ORDERID i
FK5,16,i5 | SHIPID FK1,12,i1 SHIPID FK4,19,116 |STATUSID DESCRIPTION FK4,111,17 | TYPEID H TEM
ORDERID SHIPMENTIDENTIFICATIONNUMBER FK8117,11 | UOMID COUNTEDASAVAILABLE REFID '
FKLI7,13 | CARRIERID " POLINEITEM e DEFAULTFLAG rH1 REFITEMID ' PK i}
CARTONTYPEID L L L DESCRIPTION ACTIVEFLAG 2 pATECREATED PO~
TRACKINGNUM o 2 R 2 17 PARTNUM PICKABLE 13 DATEPOSTED u1 NAM
T CARTONNUM Wo VENDORPARTNUM RECEIVABLE SERIALNUM FK3,15,12 | TYPE]
DATECREATED. | | 1 8 e DATELASTFULFILLMENT FK2,15,11,U1 | LOC Lud TXNID TAXA
FK3,14,i8 | ORDERTYPEID SOSTATUS PK D DATESCHEDULEDFULFILLMENT SORTORDER EDITSEQUENCE DESC
U1 sscc DU DTS REVLEVEL K116 DEFAULTCUSTOMERID REFNUMBER FKLI3 [INCO
FREIGHTWEIGHT PK |& H u1,110 NUM REPAIRFLAG FKa,17 DEFAULTVENDORID TXNLINEID FK2,14 EXPE|
FREIGHTAMOUNT PK D FK4,114,19 [MOITEMID TBDCOSTFLAG DATELASTMODIFIED QUANTITY ACTI
WEIGHTUOM u1 |NAME TYPEID FK6,18,118 QBCLASSID AMOUNT PERC
LEN FK1,11 [SHIPID FK8,112,115 | STATUSID NOTE 6 FKLIBIL | CUSTOMERID AMO
HEIGHT FK3,12 | PAYMENTTYPE QTYTARGET ba QTYTOFULFILL | i FKAJ1 [TAXR
WIDTH ACCOUNTNUMBER QTYORDERED QTYFULFILLED o — e
SIZEUOM ADDRESS QTYSCRAPPED QTYPICKED L
INSUREDVALUE ary FK7,113,116 | USERID UNITCOST ? ? FRIRLR
ADDITIONALHANDLING FK2,13 | STATEID DATESCHEDULED TOTALCOST so
SHIPPERRELEASE zp DATELASTMODIFIED FKLI6112 | CUSTOMERID
FK2,)1 | DELIVERYCONFIRMATIONID NOTIFICATIONEMAILS 3 DATECREATED FK7,11 TAXID PK] [RmAsTATUS
FK4,12 | PACKAGETYPEID EXCEPTIONEMAILS 16 DATESTARTED TAXRATE
T T DELIVERYEMAILS 1 DATEFINISHED FK10,119,125 |STATUSID R ndek [0
R SATURDAYDELIVERY FK3,17,117 [LOCATIONGROUPID g FK114,124 | CARRIERID BOMITEMTOLOCATION " =
i I} o DOCUMENTSONLY FK2,18,118 | LOCATIONID ! 1 W |FK4,112,126 |FOBPOINTID U1l | NAME

Can we desigh more flexible
data model?

Making it extendable from the
beginning

Venue Attribute ID Value

Attribute

3 and only 37

Venue
id Name Address
1 Deli Llama | Peachtree Rd
2 Peking Inn | Lake St
3 Thai Tanic | Branch Dr
Attributes
id Meaning

Cuisine

Price

1

2

3 Specialty
4 DJ

Properties

VenuelD | Attribute ID | Value

1 1 Deli

1 2 S

2 1 Chinese

2 2 $55

2 3 Scorpion Bowl
2 4 No

Test: Adding concert venues

Venue
id Name Address
1 Deli Llama | Peachtree Rd
2 Peking Inn | Lake St
3 Thai Tanic | Branch Dr
Attributes

id Meaning

1 Cuisine

2 Price

3 Specialty

4 DJ

5 Live Music

6

Music Genre

Properties
VenuelD | Attribute ID | Value
1 1 Deli
1 2 S
2 1 Chinese
2 2 $55
2 3 Scorpion Bowl
2 4 No
3 5 Yes
3 6 Jazz

2 tables?

Attributes

Properties

s

Meaning

VenuelD

Attribute ID

Value

Cuisine

Deli

Price

S

Specialty

Chinese

DJ

$55

Live Music

Scorpion Bowl

Music Genre

No

Name

Deli Llama

O|IN U | PP W[IN]EFE

Address

Peking Inn

Peachtree Road

NTFRP[INIFP[INIDNININ(FEPE

0|0 ININ|[PITWIN]IEFERIDN|R

Lake ST

Joining everything into a single
table

Venues
VenuelD | Attribute Value
1 Cuisine Deli
1 Price S
2 Cuisine Chinese
2 Price SSS
2 Specialty Scorpion Bowl
2 DJ No
1 Name Deli Llama
2 Name Peking Inn
1 Address Peachtree Road
2 Address Lake ST

This data format is called triples

Semantic meaning

Venue 1 has name Deli Llama
| | |
! i !
Subject Predicate Object
Venue 1 serves deli
| | |
! ! !
Subject Predicate Object

* Single table - represents arbitrary facts about food and
music venues

* Each triple is composed of a subject, a predicate, and
an object.

* Each triple represents a simple linguistic statement

Semantic table

Venues
Subject | Predicate Object
S1 Cuisine Deli
S1 Price S
S2 Cuisine Chinese
S2 Price $SS
S2 Specialty Scorpion Bowl
S2 DJ No
S1 Name Deli Llama
S2 Name Peking Inn
S1 Address Peachtree Road
S2 Address Lake ST

Semantic modeling

* The subject corresponds to an entity—a “thing” for which
we have a conceptual class:

* People
* Places
* Even periods of time and ideas
* Predicates are properties of the entity to which they are
attached.
e A person’s name or birth date
e Restaurant location

* Objects fall into two classes:
* Entities that can be the subject in other triples
 Scalar values such as strings or numbers.

Data graph

* Multiple triples can be tied together by using the same
subjects and objects in different triples

* As we assemble these chains of relationships, they form a
directed labeled graph

Graph of venues: sample node

Integrating new entity:
neighborhood

Neighborhoods

Subject | Predicate Object

S11 Name Financial District
S11 Contained-by | S12

S12 Name Downtown core
S12 Contained-by | Toronto

S13 Name Greektown

S13 Contained-by | S14

S14 Name East end

S14 Contained-by | Toronto

We can append neighborhood information to
the same table as our venue data!

Graph of neighborhoods:
sample node

-~ -
-
-
_—
-
-
-
_—
— -

Integrating data from multiple

sources
Name ﬂ
7 Llama

—_—
p—
—_—
—
—_—

—_—
—
—_—
—_—

-
-
_— -

Advantages of semantic model
1/5

* We can add any new data type into the same table

Espresso machine locations, coffee shops, book stores, gas
stations ...

Advantages of semantic model
2/5

* We can add any new data type into the same table

 Self-describing data — do not need a special schema
definition
the semantic relationships that previously were inferred
from the table and column are contained in data itself

Advantages of semantic model
3/5

* We can add any new data type into the same table

 Self-describing data — do not need a special schema
definition
e Easy integration of data from multiple sources

Just add new data to the same table and create a link to
the old data if needed

Advantages of semantic model
4/5

* We can add any new data type into the same table

 Self-describing data — do not need a special schema
definition

e Easy integration of data from multiple sources

 We can add new features without affecting legacy software

no schema migration, there is the same simple schema all
the time

Advantages of semantic model
5/5

* We can add any new data type into the same table

 Self-describing data — do not need a special schema
definition

e Easy integration of data from multiple sources
 We can add new features without affecting legacy software

e Simple common data interface

everyone can write an app in Python, or Ruby to plot crime
statistics on the map or find cuisines in the walking
distance from the movie

Semantic web

* RDF (Resource Description Framework) web data can be
thought of in terms of a decentralized directed labeled
graph wherein the arcs start with subject URIs, are labeled
with predicate URIs, and end up pointing to object URIs or
scalar values

e Uniform Resource Identifier (URI) is a string of characters
used to uniquely identify a resource (for example for books -
urn:isbn:0-486-27557-4)

Example: Celebrities dataset

* Entities — celebrity, relationship, rehab, album, movie
* Entities can be both subject and object

* Predicates:
* enemy
* person
* released album
e starred _in
* start
* end
* with

Let’s model celebrity

Britney Spears starred in Cros§roads

Subject Predicate Object

Let’s model relationships

Relatiqnshipl
|
|
Subject

Relationshipl
Subvject

Relatiqnshipl
Subvject

Relationshipl

|
Subject

with

Predicate

with
with

Predicate

start
2t

Predicate

end
|

|
\4

Predicate

Britqev Spears

Object

Justip Timberlake

Object

1998

—_—
I
|

Ob}ect
2002

I
I

Object

Celebrity graph: sample node

: 1998
Mikey Mouse x 2002
A
Club t\ start, - M
\ -
\\ - end
starred in \ Relationship 1 _
\ //\;ﬁtﬁ* Justin
Crossroads w_ \ with =~ Timberlake
\\\ \\ e
N \ K/
starred in >4 Ry | __enemy
Bntneyv/\Spears ““““ » Shar Jackson
/// \\
/// N
person - Y
- N\
p Rehab 1 N \re/eased album
/s \ AN
start 7 \ N
/// end\ n
\ ...Baby One

16-Feb-2007 17-Feb-2007 More Time

Example 1. Which celebrities have
dated more than one movie star?

CREATE VIEW movie_stars AS
SELECT distinct subject FROM celebrities
WHERE predicate = 'starred_in’;

CREATE VIEW relationships AS

SELECT distinct R1.object AS celebl, R2.object AS celeb2
FROM celebrities R1, celebrities R2

WHERE R1.predicate = 'with' AND R2.predicate = 'with'
AND R1.subject = R2.subject AND R1.object < R2.object;

SELECT distinct celebl, COUNT(celeb2) AS cnt FROM relationships
WHERE celeb2 IN (SELECT * FROM movie_stars)

GROUP BY celebl

HAVING cnt >=2;

Example 2. Which musicians have
spent time in rehab?

CREATE VIEW musicians
AS select distinct subject from celebrities

where predicate = 'released_album’;

CREATE VIEW rehab_celebs
AS SELECT distinct object FROM celebrities

WHERE predicate = 'person’;

SELECT * from musicians

INTERSECT
SELECT * from rehab_celebs;

Triplestore implementation:
indexes

A common technique: cross-indexing the subject, predicate,
and object in all different permutations so that all triple
qgueries can be answered through fast lookups

e Each of the indexes holds a different permutation of each
triple that is stored in the graph

* The name of the index (ops, osp, pos, pso, sop, spo)
indicates the ordering of the terms in the index (i.e., the pos
index stores the predicate, then the object, and then the
subject, in that order)

Triplestore implementation:
guery format

* The basic query method takes a (subject, predicate, object)
pattern and returns all triples that match the pattern.

* Terms in the triple that are set to None are treated as
wildcards.

* The query determines which index to use based on which
terms of the triple are wildcarded, and then iterates over
the appropriate index

Queries can be implemented as
triple matchings

(*, ‘with’, ‘Britney Spears’)

* We can put the results into a list variable — relationships

(“?’relationships’, ‘with’, ‘Britney Spears’)

* And use the results in a subsequent queries:

(‘relationships’, ‘with’, “?partners’)

http://linkeddata.org/

= < opavc pest o
brainz Audio- Flickr \-'eb org e BME
Scrobbler QpOos exporter B
» Confc rence
Corpus ’

Cala»s

The goal: exposing, = B profies [+ v QLR

sharing, and connecting +~__ Vs, N Res
. Guten- Virtuoso

pieces of data, haings berg e

information, and | _ open)

RKB

knowledge on the Ww 2197
Semantic Web using] oon
URIS and RDF '1' ; Freebase
=
LmkedCT
Daily \ g:r"ﬂg(
Pub iz ‘ ,‘_g.__
Chem [—p=_t | s v

KEGG : /f,\\ & [T uniprot ‘_

RDF Book
Mashup

Semantic modeling example:
international databases

* Consider a database that stores outlets of a business
(McDonald’s?) in different countries
* We can model a business address as a sematic table
* USA: address, zipcode, city, [county], state, country
e Canada: address, zipcode, [county], province, country
* France: address, zipcode, [region], country

NoSQL ("Not only SQL")
databases

NoSQL database systems

* New generation of non-relational database systems

* Properties:
* Flexibility: schema-less
* Scalability: inherently parallelizable

Main types of NoSQL systems

v'Graph databases: store data as connected nodes of a graph
HyperGraphDB, multiple implementations of semantic
RDF triplestores
* Key-value databases: key-value pairs
Redis, SimpleDB
* Document databases: key-value stores where values are
entire documents

CouchDB, MongoDB
* Wide-column databases: multi-dimensional sorted map
Google's BigTable, Cassandra

Impedance mismatch

* Mismatch between tables and data structures in memory

* For object-oriented languages: invented Object-
Relational Mapping (ORM)

* For other languages (functional, c) — data structures just
do not match!

Objects Database entries

Report card

Course l

\ Takes /' Enrolis

]
Registration

Student IO
. Course Mumber
T Grade

Relational databases predominate

1980
Relational databases

1990

Relational databases

2000

2010

Scaling up

Two alternatives:
* Bigger servers

 Lots of little boxes in massive grids

id % 4

Cluster

Partitioning

 Vertical: normalization, splitting into smaller tables

* Horizontal: splitting single table into multiple sets of rows

* Horizontal partitioning when rows are distributed across
multiple nodes based on some attribute (for example,
zip code) is called sharding

Vertical Horizontal

Parallelism is not natural for
relational databases

* SQL designed to run as a single node

* Both vertical partitioning and horizontal partitioning
introduce performance bottlenecks:

* Increased latency when querying across more than one
shard

* Indexes are sharded by one dimension, so that some
searches are optimal, and others are slow or impossible

* Cross-shard consistency and durability is hard to achieve
due to the more complex failure modes of a set of
servers

New requirements on data

Mmanagement
Trends Requirements
Volume of data * Real scalability

®* massive database distribution

®* dynamic resource management
Cloud comp. (laa$) ® horizontally scaling systems
Velocity of data * Frequent update operations
Big traffic Massive read throughput

Variety of data * Flexible database schema

History

1980
Relational databases

1990

2000
NoSQL databases

2010

Google BigTable (2006)

« Data model: three-dimensional indexed sorted map
 Input (row, column, timestamp) - Output (cell contents)

Columns “contents:”

II II II II II . i

|

“com.cnn.www”

Rows

http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf

http://static.googleusercontent.com/media/research.google.com/en/archive/bigtable-osdi06.pdf

Amazon: Dynamo DB (2007)

e Data model:
simple hash table (map): key-value data store

(Key1) —> [[Veluoit
(Keyz) —» [[Nelie2]

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

Dynamo: architecture

* Implemented as distributed hash table (DHT) based on
consistent hashing — hashing into the place on the ring

 Elastic scalability: able to scale out one node at a time, with
minimal impact on the system

* Decentralization

machine 2 machine 2
machine 1 machine 1
\ machine 3
key .

. key
machine O machine 0

Common characteristics of NoSQl
databases

 Not relational
* Cluster-friendly

e Schema-less

e Open source (mostly)

NoSQL categories by data models

Graph
Wide-column
Key - value (hash table)

A

Key - document

1. Graph Databases:
Representatives

z Q AL
@ - LRI
: (O Neo4 s
. QY J X TERA vl

o _ e =0

£ .. .-. ""

, ‘ N »®®
S oS o8

ab :‘ e
® ® Q. vk plon
rrentDB
GIRAPH

%
@TITAN

¥ 2
4. InfiniteGraph

Ranked list: http://db-engines.com/en/ranking/eraph+dbms

http://db-engines.com/en/ranking/graph+dbms

2. Column-family Stores:
Representatives

Cassandra

/@:5%

HBASE

Wl HYPERTABLE

agCccurmuLao

Ranked list: http://db-engines.com/en/ranking/wide+column+store

http://db-engines.com/en/ranking/wide+column+store

3. Key-value stores

* Value can be anything
e Search only by key — no structure inside the value

* Basic operations:
Get the value for the key value:= get (key)
Put a value for a key put (key, wvalue)
Delete a key-value delete (key)

@ —» Value 1
m —» Value 2

. Key-value Stores:
oresentatives

LevelDB

QleAalle 1 2{? ORACLE

BERKELEY DB NOSQL DATABASE 4 . —

} 4 NfiniscoN

amazon “
DynamoDB

Ranked list: http://db-engines.com/en/ranking/key-value+store

Project
Voldemort

http://db-engines.com/en/ranking/key-value+store

4. Document stores

Also key-value pairs

But value is a semi-structured text data - document

Documents are self-describing pieces of data

Hierarchical tree data structures
* Nested associative arrays (maps), collections, scalars
e XML, JSON (JavaScript Object Notation), BSON, ...

Can query inside document: building search indexes on
various document keys/fields

Document Data Formats

e Structured Text Data
e JSON, BSON (Binary JSON)

e JSON is currently number one data format used on the Web

e XML: eXtensible Markup Language
e RDF: Resource Description Framework

e Binary Data
e often, we want to store objects (class instances)
e objects can be binary-serialized (marshalled)

e and kept in a key-value store

e there are several popular serialization formats
e Protocol Buffers, Apache Thrift

JSON: Basic Information

e Text-based open standard for data interchange
e Serializing and transmitting structured data

e JSON = JavaScript Object Notation

e Originally specified by Douglas Crockford in 2001
e Derived from JavaScript scripting language
e Uses conventions of the C-family of languages

e Filename: *.json
e [nternet media (MIME) type: application/json

http://www.json.org

http://www.json.org/

JSON: Data Types (1)

e object — an unordered set of key+value pairs
e these pairs are called properties (members) of an object
e syntax: { key: value, key: value, key: value, ...}

e array — an ordered collection of values (elements)
e syntax: [comma-separated values]

JSON: Data Types (2)

e value — string in double quotes / number / true or

false (i.e., Boolean) / null / object / array
e Can be nested

value

|_string
-
true

null

Most documents have JSON format

key=3 ->

key=5 ->

{

{

"personID": "3",
"firstname": "Martin'",
"likes": ["Biking", "Photography" 1],
"lastcity": "Boston",
"wvisited": ["NYC", "Paris"] }
"personID": "5",
"firstname": "Pramod",
"citiesvisited": ["Chicago", "London", "NYC"],
"addresses": |
{ "state": "AK",
"city": "DILLINGHAM" },
{ "state": "MH",
"city": "PUNE" }],

"lastcity": "Chicago“ }

Document store: sample query

Example in MongoDB syntax
e Query language expressed via JSON
e clauses: where, sort, count, sum, etc.

SQL: SELECT * FROM users
MongoDB: db.users.find()

SELECT * FROM users WHERE personID = "3"
db.users.find({"personID":"3"})

SELECT firstname,lastcity FROM users WHERE personID=5

db.users.find ({"personID":"5"},
{firstname:1,lastcity:1})

Document Databases:
Representatives

I
. mongoDB

CouchDB

relax

s { .

terrastore

Ranked list: http://db-engines.com/en/ranking/document+store

http://db-engines.com/en/ranking/document+store

Schema-less?

anOrder [“price”]*anOrder [“gty”]

* Need to know the names of attributes
* Implicit schema: figure out the meaning of data

Consistency and
concurrency

Consistency

RDBMSs need ACID transactions — because data is in pieces

We cannot afford that data is updated in chunks and parts
of it are overridden

We use transactions to wrap things together
Graph databases do ACID updates

Multi-client system

* ACID requires additional handling, because we cannot lock
the entire table in web app domain

* Holding a transaction open — degrades performance

Offline lock

Overrides last update —

last update is lost

Offline lock

v101

Version

stamp

Example: booking hotel rooms

Q-2 -2

* If the connection is temporarily lost at time of booking

2 alternatives
* Prohibit
* Allow double-booking

Consistency vs availability
This is a business choice, not a technical choice

CAP theorem

* Tradeoff between:
e Consistency (no overbooking)
 Availability (response time)
 Partition tolerance (parallelism)

* Can have only 2 out of 3

* Consistency vs response time of your server

In partitioned systems

— Consistency

Choose one

Partition —

— Availability

CAP theorem and DBMSs

/ \

/,-"
/" Pick Twr:\

When to use NoSQL

e Large amounts of data

* Complex evolving schema

 The domain matches graph or document

* Ease of development: rapid time to market
* Projects that give you a strategic advantage

http://www.tim-wellhausen.de/papers/NoSQL-Patterns/NoSQL-Patterns.html

Future?

1980
Relational databases

1990

2000
NoSQL databases

2010

Polyglot persistence

One Example of NoSQL Usage:
Facebook

Facebook statistics (Spring 2014)

e 1.28 billion users (1.23B active monthly) faCEb00k®
e 300 PB of user data stored

e 10 billion messages sent daily
e 250 billion stored photos (350 million uploaded daily)

2009: 10,000 servers
2010: 30,000 servers
2012: 180,000 servers (estimated)

source: http://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats/

Database Technology Behind
~acebook
Apache Hadoop http://hadoop.apache.org/ p -

e Hadoop File System (HDFS) UIDZIE]
e over 100 PB in a single HDFS cluster

e an open source implementation of MapReduce:
e Enables efficient parallel calculations on massive amounts of data

Apache Hive http://hive.apache.org/
e SQL-like access to Hadoop-stored data
e integration of MapReduce query evaluation

sources: http://goo.gl/SZ6jia http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

http://hadoop.apache.org/
http://hive.apache.org/
http://goo.gl/SZ6jia
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

Data
-ace

00k

0ase |

‘echnology Behind

Apache HBase nttp://hbase.apache.org/ FIHI=BFHSHEE
e a2 Hadoop column-family database
e used for e-mails, instant messaging and SMS
e replacement for MySQL and Cassandra

I\/Iemcached http://memcached.org/
e distributed key-value store
e used as a cache between web servers

and MySQL servers since the beginning of FB

sources: http://goo.gl/SZ6jia http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

http://hbase.apache.org/
http://memcached.org/
http://goo.gl/SZ6jia
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

Database Technology Behind
~acebook Il

Apache Giraph http://giraph.apache.org/ SERETN
e graph database -:‘-=.;. 2 :’;‘.é

* facebook users and connections is LRt

one very large graph Sasgiasi
GIRAPH

e used since 2013 for various analytic tasks

RocksDB http://rocksdb.org/
e high-performance key-value store

e developed internally in FB, now open- "‘ RocksDB

source

sources: https://code.facebook.com/posts/509727595776839/scaling-apache-giraph-to-a-trillion-edges/ http://goo.gl/XNtG6p

http://hbase.apache.org/
http://rocksdb.org/
https://code.facebook.com/posts/509727595776839/scaling-apache-giraph-to-a-trillion-edges/
http://goo.gl/XNtG6p

