
Alternative data models
Lecture 08.01

By Marina Barsky

CMPT 321
FALL 2017

Relational model has many
benefits

• Logical data independence: views

• Ad hoc queries

• Mature technologies:

• Disk algorithms

✓Indexes

• Query optimizer

✓Concurrent transactions

• Write-ahead logging

Semantics – the study of meaning

We like mushrooms

Mushrooms scare Ann

• The same word - different semantics

• People deduce meaning implicitly: from the rules of the
language plus context

• Computer program needs explicit sematics

Case study.

Restaurant search

Data about restaurants:

prices

location

cuisine

hours

Single-table model: spreadsheets

Restaurant Address Cuisine Price Open

Deli Llama Peachtree Rd Deli $ Mon, Tue, Wed, Thu, Fri

Peking Inn Lake St Chinese $$$ Thu, Fri, Sat

Thai Tanic Branch Dr Thai $$ Thu, Fri, Sat, Sun

Lord of the
Fries

Flower Ave Fast Food $$ Tue, Wed, Thu, Fri, Sat,
Sun

Wok This Way Second St Chinese $ Mon, Tue, Wed, Thu, Fri,
Sat, Sun

Award
Wieners

Dorfold
Mews

Fast Food $ Mon, Tue, Wed, Thu, Fri,
Sat

How do we know the meaning of word ‘Chinese’?

Semantics of a single table

• The row and column explains what the value means to a
person reading the data

• The fact that Chinese is in the row Peking Inn and in the
column Cuisine tells us that “Peking Inn serves Chinese
food.”

• You know this because you understand what restaurants
and cuisines are and because you’ve previously learned how
to read a table

Limitations of a single table model

• Multi-valued columns are not searchable:

find the restaurants that will be open late on Friday night?

• Connecting more tables referencing the same data: our
friends’ reviews of the restaurants

no easy way to search across both documents to find
restaurants near our homes that our friends recommend

Relational model

Interval closeday

Cuisine

nameid

Restaurant

name

id

address

offers

open

open

price

Restaurant (id, name, address, price)
Cuisine (id, name)
Interval (id, day, open, close)

id

Offers (RestaurantID, cuisineID)
Open (RestaurantID, IntervalID)

Relational model: tables
Restaurant

id Name Address Price

1 Deli Llama Peachtree Rd $

2 Peking Inn Lake St $$$

Cuisine

id Name

1 Deli

2 Chinese

3 Thai

4 Fast food

Intervals

id Day Open Close

1 Mon 11 16

2 Tue 11 16

3 Wed 11 16

4 Thu 11 19

5 Fri 11 20

6 Thu 5 22

7 Fri 5 23

8 Sat 5 23

RestaurantCuisine

RestID CuisineID

1 1

2 2

Hours

RestID IntervalID

1 1

1 2

1 3

1 4

1 5

2 6

2 7

2 8

Benefits: no redundancy

• Ad hoc queries: Find all the restaurants that will be open at
10 p.m. on a Friday

SELECT R.Name, C.Name, I.Open, I.Close

FROM Restaurant R, Cuisine C, Intervals I,

RestaurantCuisine RC, Hours H

WHERE R.id = RC.RestaurantID AND RC.CuisineID=C.ID

AND R.id=Hours.RestaurantID AND I.id = H.intervalID

AND I.Day="Fri"

AND I.Open<22

AND I.Close>22

Relational model: tables
Restaurant

id Name Address Price

1 Deli Llama Peachtree Rd $

2 Peking Inn Lake St $$$

Cuisine

id Name

1 Deli

2 Chinese

3 Thai

4 Fast food

Intervals

id Day Open Close

1 Mon 11 16

2 Tue 11 16

3 Wed 11 16

4 Thu 11 19

5 Fri 11 20

6 Thu 5 22

7 Fri 5 23

8 Sat 5 23

RestaurantCuisine

RestID CuisineID

1 1

2 2

Hours

RestID IntervalID

1 1

1 2

1 3

1 4

1 5

2 6

2 7

2 8

How do we know
the meaning of
tuple (1,1) in
RestaurantCuisine?

Semantics of relational model

• The meaning of each value is described by the schema

• Each datum is labeled with what it means by the table in
which it appears and by the column

• We convey this semantics to the computer program: we do
not need to define what the restaurant is, but we can still
get a list of restaurants with given properties

Extending scope of our search
web app
• Our restaurant search app is up and running

• We receive a new data to handle: Bars

Bar
Name Address DJ Specialty drink

The bitter end 14th avenue No Beer

Peking Inn Lake St No Scorpion Bowl

Hammer Time Wildcat Dr Yes Hennessey

Integrating new data with existing
model
• We cannot completely detach bars from restaurants and

store them in a separate table:

• Many restaurants serve as bars later in the evening

• Bars and restaurants have common properties

• Someone might want to query across both tables

Bar
Name Address DJ Specialty drink

The bitter end 14th avenue No Beer

Peking Inn Lake St No Scorpion Bowl

Hammer Time Wildcat Dr Yes Hennessey

This cannot be a separate table!

Subclasses?

• Venue (id, name, address)

• RestaurantCuisine (id, cuisineID)

• Bar (id, DJ, specialty)

Open

to Intervals

Venue

id name address

Restaurant

isa isa

Bar

DJ?

Specialty

Offers

to Cuisine

Constantly evolving schema

• Relational databases:

• Well-defined data models

• Know upfront that schema will be stable

• Typical usage pattern

• Data integration across the Web:

• Rapidly changing types of data:

• Cannot predict how data will be evolving

• Do not know how data will be usedused

Changing schema each time is
expensive!
• Schema migration:

• Load data from old tables into new tables

• Update all triggers, functions and procedures

• Update all queries and views

• Update web site code

Techniques for schema migration:
 ORM (Hibernate)
 Stored procedures
 …

Complexities and bugs …
Downtime…

Semantics: very complex schemas

• Incredibly complicated schemas which include different data

types

• Hundreds or thousands of inter-connected entities

• Understanding meaning of data is hard -> impossible

Movies and movie goers E/R

Hospital E/R (left upper corner)

Can we design more flexible
data model?

Making it extendable from the
beginning

Attribute meaningid

ValueVenue

name

id

address

Attribute ID

3 and only 3?
Venue

id Name Address

1 Deli Llama Peachtree Rd

2 Peking Inn Lake St

3 Thai Tanic Branch Dr

Attributes

id Meaning

1 Cuisine

2 Price

3 Specialty

4 DJ

Properties

VenueID Attribute ID Value

1 1 Deli

1 2 $

2 1 Chinese

2 2 $$$

2 3 Scorpion Bowl

2 4 No

Test: Adding concert venues
Venue

id Name Address

1 Deli Llama Peachtree Rd

2 Peking Inn Lake St

3 Thai Tanic Branch Dr

Attributes

id Meaning

1 Cuisine

2 Price

3 Specialty

4 DJ

5 Live Music

6 Music Genre

Properties

VenueID Attribute ID Value

1 1 Deli

1 2 $

2 1 Chinese

2 2 $$$

2 3 Scorpion Bowl

2 4 No

3 5 Yes

3 6 Jazz

2 tables?

Attributes

id Meaning

1 Cuisine

2 Price

3 Specialty

4 DJ

5 Live Music

6 Music Genre

7 Name

8 Address

Properties

VenueID Attribute ID Value

1 1 Deli

1 2 $

2 1 Chinese

2 2 $$$

2 3 Scorpion Bowl

2 4 No

1 7 Deli Llama

2 7 Peking Inn

1 8 Peachtree Road

2 8 Lake ST

Joining everything into a single
table

Venues

VenueID Attribute Value

1 Cuisine Deli

1 Price $

2 Cuisine Chinese

2 Price $$$

2 Specialty Scorpion Bowl

2 DJ No

1 Name Deli Llama

2 Name Peking Inn

1 Address Peachtree Road

2 Address Lake ST

This data format is called triples

Semantic meaning

• Single table - represents arbitrary facts about food and

music venues

• Each triple is composed of a subject, a predicate, and

an object.

• Each triple represents a simple linguistic statement

Venue 1 has name Deli Llama

Subject Predicate Object

Venue 1 serves deli

Subject Predicate Object

Semantic table
Venues

Subject Predicate Object

S1 Cuisine Deli

S1 Price $

S2 Cuisine Chinese

S2 Price $$$

S2 Specialty Scorpion Bowl

S2 DJ No

S1 Name Deli Llama

S2 Name Peking Inn

S1 Address Peachtree Road

S2 Address Lake ST

Semantic modeling

• The subject corresponds to an entity—a “thing” for which
we have a conceptual class:
• People
• Places
• Even periods of time and ideas

• Predicates are properties of the entity to which they are
attached.
• A person’s name or birth date
• Restaurant location

• Objects fall into two classes:
• Entities that can be the subject in other triples
• Scalar values such as strings or numbers.

Data graph

• Multiple triples can be tied together by using the same
subjects and objects in different triples

• As we assemble these chains of relationships, they form a
directed labeled graph

Graph of venues: sample node

Deli
Llama

Deli

$$

S1

Name

Cuisine

Price

Integrating new entity:
neighborhood

Neighborhoods

Subject Predicate Object

S11 Name Financial District

S11 Contained-by S12

S12 Name Downtown core

S12 Contained-by Toronto

S13 Name Greektown

S13 Contained-by S14

S14 Name East end

S14 Contained-by Toronto

We can append neighborhood information to
the same table as our venue data!

Graph of neighborhoods:
sample node

Greek
town

S14

East
end

S13

Name

Contained-by

Contained-by

Name

Toronto

Integrating data from multiple
sources

Deli
Llama

Deli

$$

S1

Name

Cuisine

Price

Greek
town

S14

East
end

S13

Name

Contained-by

Contained-by

Name

Toronto

Located-at

Advantages of semantic model
1/5
• We can add any new data type into the same table

Espresso machine locations, coffee shops, book stores, gas
stations …

Advantages of semantic model
2/5
• We can add any new data type into the same table

• Self-describing data – do not need a special schema
definition

the semantic relationships that previously were inferred
from the table and column are contained in data itself

Advantages of semantic model
3/5
• We can add any new data type into the same table

• Self-describing data – do not need a special schema
definition

• Easy integration of data from multiple sources

Just add new data to the same table and create a link to
the old data if needed

Advantages of semantic model
4/5
• We can add any new data type into the same table

• Self-describing data – do not need a special schema
definition

• Easy integration of data from multiple sources

• We can add new features without affecting legacy software

no schema migration, there is the same simple schema all
the time

Advantages of semantic model
5/5
• We can add any new data type into the same table

• Self-describing data – do not need a special schema
definition

• Easy integration of data from multiple sources

• We can add new features without affecting legacy software

• Simple common data interface

everyone can write an app in Python, or Ruby to plot crime
statistics on the map or find cuisines in the walking
distance from the movie

Semantic web

• RDF (Resource Description Framework) web data can be
thought of in terms of a decentralized directed labeled
graph wherein the arcs start with subject URIs, are labeled
with predicate URIs, and end up pointing to object URIs or
scalar values

• Uniform Resource Identifier (URI) is a string of characters
used to uniquely identify a resource (for example for books -
urn:isbn:0-486-27557-4)

Example: Celebrities dataset

• Entities – celebrity, relationship, rehab, album, movie

• Entities can be both subject and object

• Predicates:

• enemy

• person

• released_album

• starred_in

• start

• end

• with

Let’s model celebrity

Britney Spears starred in Crossroads

Subject Predicate Object

Let’s model relationships

Relationship1 with Britney Spears

Subject Predicate Object

Relationship1 with Justin Timberlake

Subject Predicate Object

Relationship1 start 1998

Subject Predicate Object

Relationship1 end 2002

Subject Predicate Object

Celebrity graph: sample node

Crossroads

Britney Spears

Mikey Mouse
Club

Relationship 1

1998
2002

Justin
Timberlake

Shar Jackson

…Baby One
More Time

Rehab 1

16-Feb-2007 17-Feb-2007

starred in

starred in

with
with

start
end

person

start
end

enemy

released album

Example 1. Which celebrities have
dated more than one movie star?
CREATE VIEW movie_stars AS

SELECT distinct subject FROM celebrities

WHERE predicate = 'starred_in';

CREATE VIEW relationships AS

SELECT distinct R1.object AS celeb1, R2.object AS celeb2

FROM celebrities R1, celebrities R2

WHERE R1.predicate = 'with' AND R2.predicate = 'with'

AND R1.subject = R2.subject AND R1.object < R2.object;

SELECT distinct celeb1, COUNT(celeb2) AS cnt FROM relationships

WHERE celeb2 IN (SELECT * FROM movie_stars)

GROUP BY celeb1

HAVING cnt >=2;

Example 2. Which musicians have
spent time in rehab?
CREATE VIEW musicians

AS select distinct subject from celebrities

where predicate = 'released_album';

CREATE VIEW rehab_celebs

AS SELECT distinct object FROM celebrities

WHERE predicate = 'person';

SELECT * from musicians

INTERSECT

SELECT * from rehab_celebs;

Triplestore implementation:
indexes
• A common technique: cross-indexing the subject, predicate,

and object in all different permutations so that all triple
queries can be answered through fast lookups

• Each of the indexes holds a different permutation of each
triple that is stored in the graph

• The name of the index (ops, osp, pos, pso, sop, spo)
indicates the ordering of the terms in the index (i.e., the pos
index stores the predicate, then the object, and then the
subject, in that order)

Triplestore implementation:
query format
• The basic query method takes a (subject, predicate, object)

pattern and returns all triples that match the pattern.

• Terms in the triple that are set to None are treated as
wildcards.

• The query determines which index to use based on which
terms of the triple are wildcarded, and then iterates over
the appropriate index

Queries can be implemented as
triple matchings
(*, ‘with’, ‘Britney Spears’)

• We can put the results into a list variable – relationships

(‘?relationships’, ‘with’, ‘Britney Spears’)

• And use the results in a subsequent queries:

(‘relationships’, ‘with’, ‘?partners’)

http://linkeddata.org/

The goal: exposing,
sharing, and connecting
pieces of data,
information, and
knowledge on the
Semantic Web using
URIs and RDF

Semantic modeling example:
international databases
• Consider a database that stores outlets of a business

(McDonald’s?) in different countries

• We can model a business address as a sematic table

• USA: address, zipcode, city, [county], state, country

• Canada: address, zipcode, [county], province, country

• France: address, zipcode, [region], country

NoSQL ("Not only SQL")
databases

NoSQL database systems

• New generation of non-relational database systems

• Properties:

• Flexibility: schema-less

• Scalability: inherently parallelizable

Main types of NoSQL systems

✓Graph databases: store data as connected nodes of a graph

HyperGraphDB, multiple implementations of semantic
RDF triplestores

• Key-value databases: key-value pairs

Redis, SimpleDB

• Document databases: key-value stores where values are
entire documents

CouchDB, MongoDB

• Wide-column databases: multi-dimensional sorted map

Google's BigTable, Cassandra

Impedance mismatch

• Mismatch between tables and data structures in memory

• For object-oriented languages: invented Object-
Relational Mapping (ORM)

• For other languages (functional, c) – data structures just
do not match!

Relational databases predominate

1980

1990

2000

2010

Relational databases

Object-oriented databasesRelational databases

Scaling up

Two alternatives:

• Bigger servers

• Lots of little boxes in massive grids

Partitioning

• Vertical: normalization, splitting into smaller tables

• Horizontal: splitting single table into multiple sets of rows

• Horizontal partitioning when rows are distributed across
multiple nodes based on some attribute (for example,
zip code) is called sharding

Parallelism is not natural for
relational databases
• SQL designed to run as a single node

• Both vertical partitioning and horizontal partitioning
introduce performance bottlenecks:

• Increased latency when querying across more than one
shard

• Indexes are sharded by one dimension, so that some
searches are optimal, and others are slow or impossible

• Cross-shard consistency and durability is hard to achieve
due to the more complex failure modes of a set of
servers

New requirements on data
management

Trends Requirements

• Volume of data
.

• Real scalability
• massive database distribution
• dynamic resource management

• Cloud comp. (IaaS) • horizontally scaling systems

• Velocity of data . • Frequent update operations

• Big traffic • Massive read throughput

• Variety of data • Flexible database schema

History

1980

1990

2000

2010

Relational databases

NoSQL databases

Google BigTable (2006)

• Data model: three-dimensional indexed sorted map

• Input (row, column, timestamp)  Output (cell contents)

62

html…
at t1

R
o

w
s

Columns

Time

“com.cnn.www”

.

.

.

.

“contents:”

http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf

http://static.googleusercontent.com/media/research.google.com/en/archive/bigtable-osdi06.pdf

Amazon: Dynamo DB (2007)

• Data model:
simple hash table (map): key-value data store

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

Dynamo: architecture

• Implemented as distributed hash table (DHT) based on
consistent hashing – hashing into the place on the ring

• Elastic scalability: able to scale out one node at a time, with
minimal impact on the system

• Decentralization

Common characteristics of NoSQl
databases
• Not relational

• Cluster-friendly

• Schema-less

• Open source (mostly)

NoSQL categories by data models

1. Graph

2. Wide-column

3. Key - value (hash table)

4. Key - document

1. Graph Databases:
Representatives

Ranked list: http://db-engines.com/en/ranking/graph+dbms

http://db-engines.com/en/ranking/graph+dbms

2. Column-family Stores:
Representatives

Ranked list: http://db-engines.com/en/ranking/wide+column+store

http://db-engines.com/en/ranking/wide+column+store

3. Key-value stores

• Value can be anything

• Search only by key – no structure inside the value

• Basic operations:
Get the value for the key value:= get(key)
Put a value for a key put(key, value)
Delete a key-value delete(key)

3. Key-value Stores:
Representatives

Project
Voldemort

Ranked list: http://db-engines.com/en/ranking/key-value+store

LevelDB

http://db-engines.com/en/ranking/key-value+store

4. Document stores

• Also key-value pairs

• But value is a semi-structured text data - document

• Documents are self-describing pieces of data

• Hierarchical tree data structures

• Nested associative arrays (maps), collections, scalars

• XML, JSON (JavaScript Object Notation), BSON, …

• Can query inside document: building search indexes on
various document keys/fields

Document Data Formats

• Structured Text Data

• JSON, BSON (Binary JSON)
• JSON is currently number one data format used on the Web

• XML: eXtensible Markup Language

• RDF: Resource Description Framework

• Binary Data

• often, we want to store objects (class instances)

• objects can be binary-serialized (marshalled)
• and kept in a key-value store

• there are several popular serialization formats
• Protocol Buffers, Apache Thrift

JSON: Basic Information
• Text-based open standard for data interchange

• Serializing and transmitting structured data

• JSON = JavaScript Object Notation
• Originally specified by Douglas Crockford in 2001
• Derived from JavaScript scripting language
• Uses conventions of the C-family of languages

• Filename: *.json

• Internet media (MIME) type: application/json

http://www.json.org

http://www.json.org/

JSON: Data Types (1)

• object – an unordered set of key+value pairs
• these pairs are called properties (members) of an object
• syntax: { key: value, key: value, key: value, ...}

• array – an ordered collection of values (elements)
• syntax: [comma-separated values]

JSON: Data Types (2)

• value – string in double quotes / number / true or
false (i.e., Boolean) / null / object / array

• Can be nested

Most documents have JSON format

key=3 -> { "personID": "3",

"firstname": "Martin",

"likes": ["Biking","Photography"],

"lastcity": "Boston",

"visited": ["NYC", "Paris"] }

key=5 -> { "personID": "5",

"firstname": "Pramod",

"citiesvisited": ["Chicago", "London","NYC"],

"addresses": [

{ "state": "AK",

"city": "DILLINGHAM" },

{ "state": "MH",

"city": "PUNE" }],

"lastcity": "Chicago“ }

Document store: sample query
Example in MongoDB syntax

• Query language expressed via JSON
• clauses: where, sort, count, sum, etc.

SQL: SELECT * FROM users

MongoDB: db.users.find()

SELECT * FROM users WHERE personID = "3"

db.users.find({"personID":"3"})

SELECT firstname,lastcity FROM users WHERE personID=5

db.users.find({"personID":"5"},

{firstname:1,lastcity:1})

Document Databases:
Representatives

Ranked list: http://db-engines.com/en/ranking/document+store

http://db-engines.com/en/ranking/document+store

Schema-less?

anOrder [“price”]*anOrder[“qty”]

• Need to know the names of attributes

• Implicit schema: figure out the meaning of data

Consistency and
concurrency

Consistency

• RDBMSs need ACID transactions – because data is in pieces

• We cannot afford that data is updated in chunks and parts
of it are overridden

• We use transactions to wrap things together

• Graph databases do ACID updates

Multi-client system

• ACID requires additional handling, because we cannot lock
the entire table in web app domain

• Holding a transaction open – degrades performance

Offline lock

Get

Post

Get

Post

Overrides last update –
last update is lost

Offline lock

Get

Post

Get

Post
v102

v101

v101

v101

v101

v101

Version
stamp

Example: booking hotel rooms

• If the connection is temporarily lost at time of booking

• 2 alternatives
• Prohibit
• Allow double-booking

• Consistency vs availability

• This is a business choice, not a technical choice

CAP theorem

• Tradeoff between:

• Consistency (no overbooking)

• Availability (response time)

• Partition tolerance (parallelism)

• Can have only 2 out of 3

• Consistency vs response time of your server

In partitioned systems

Partition

Consistency

Availability

Choose one

CAP theorem and DBMSs

When to use NoSQL

• Large amounts of data

• Complex evolving schema

• The domain matches graph or document

• Ease of development: rapid time to market

• Projects that give you a strategic advantage

http://www.tim-wellhausen.de/papers/NoSQL-Patterns/NoSQL-Patterns.html

Future?

1980

1990

2000

2010

Relational databases

NoSQL databases

Polyglot persistence

One Example of NoSQL Usage:
Facebook
Facebook statistics (Spring 2014)

• 1.28 billion users (1.23B active monthly)
• 300 PB of user data stored
• 10 billion messages sent daily
• 250 billion stored photos (350 million uploaded daily)

2009: 10,000 servers
2010: 30,000 servers
2012: 180,000 servers (estimated)

source: http://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats/

Database Technology Behind
Facebook
Apache Hadoop http://hadoop.apache.org/

• Hadoop File System (HDFS)
• over 100 PB in a single HDFS cluster

• an open source implementation of MapReduce:
• Enables efficient parallel calculations on massive amounts of data

Apache Hive http://hive.apache.org/

• SQL-like access to Hadoop-stored data
• integration of MapReduce query evaluation

sources: http://goo.gl/SZ6jia http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

http://hadoop.apache.org/
http://hive.apache.org/
http://goo.gl/SZ6jia
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

Database Technology Behind
Facebook II
Apache HBase http://hbase.apache.org/

• a Hadoop column-family database
• used for e-mails, instant messaging and SMS
• replacement for MySQL and Cassandra

Memcached http://memcached.org/

• distributed key-value store
• used as a cache between web servers

and MySQL servers since the beginning of FB

sources: http://goo.gl/SZ6jia http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

http://hbase.apache.org/
http://memcached.org/
http://goo.gl/SZ6jia
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

Database Technology Behind
Facebook III
Apache Giraph http://giraph.apache.org/

• graph database
• facebook users and connections is

one very large graph
• used since 2013 for various analytic tasks

RocksDB http://rocksdb.org/

• high-performance key-value store
• developed internally in FB, now open-

source

sources: https://code.facebook.com/posts/509727595776839/scaling-apache-giraph-to-a-trillion-edges/ http://goo.gl/XNtG6p

http://hbase.apache.org/
http://rocksdb.org/
https://code.facebook.com/posts/509727595776839/scaling-apache-giraph-to-a-trillion-edges/
http://goo.gl/XNtG6p

