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“Classical” Data Processing



RDBMSs are very efficient

All the disk-based algorithms and data 
structures have great performance 

given the table is < certain size 
(typically 100GB)

What if the inputs are much-much larger?



What does scalable mean: 
operationally

In the past: 

• Out-of-core – large parts of inputs and outputs are on 
disk

• External-memory algorithms  

• Small memory footprint

• Data is brought in chunks to main memory and the 
results are written to a local disk

• You have a guarantee that the algorithm will terminate

“Works even if data does not fit in 
main memory on a single machine”



What does scalable mean: 
operationally

Now:

• Started from 2000s – no matter how big your server 
was, you were not able to bring data fast enough to 
memory from disk

• Use 1000s computers and apply them all to the same 
problem

“Can make use of 1000s 
cheap computers”

Scale out (parallelize) vs. scale up (adding more memory)



What does scalable mean: 
algorithmically

In the past:

• O(Nm ) - Polynomial-time algorithm → tractable → 
scalable

• O(mN) - Exponential → not scalable →not for big inputs, 
processing time increases too fast

if you have N data items, you 
perform no more than Nm

operations



What does scalable mean: 
algorithmically

Now:

• Polynomial-time algorithms must be parallelizable

if you have N data items, you 
perform no more than Nm/K 
operations for some large K



What does scalable mean: 
algorithmically

Future:

• Data is streaming (Large Synoptic Survey telescope – 30 
TB/night) 

• You have no more than one pass over the data (N) –
make this pass count

• Insert data into some sort of compressed index (log N)

if you have N data items, you 
perform no more than N log N 

operations



You call an algorithm scalable

• In the past: polynomial-time algorithms

• Now: parallel polynomial-time algorithms 

• In the future: streaming algorithms



Motivation: Google Example

• 20+ billion web pages x 20KB = 400+ TB

• 1 computer reads 30-35 MB/sec from disk

~4 months to just read the web!

• ~1,000 hard drives to store the web

• Takes even more to do something useful 
with the data!

• A standard architecture for such problems:

• Cluster of commodity Linux nodes

• Commodity network (Ethernet) to connect them



Scalability of parallel architectures

D. J. DeWitt, J. Gray, "Parallel Database Systems: the Future of High Performance 
Database Systems", ACM Communications, vol. 35(6), 85-98, June 1992.

…

Logical multi-processor database designs

interconnect

…

interconnect

interconnect

Shared nothing Shared disk

…

=disk =memory =processor

Shared memory



Scalability of parallel architectures

…

Logical multi-processor database designs

interconnect

…

interconnect

interconnect

Shared nothing Shared disk

…

=disk =memory =processor

Shared memory

Only shared nothing architecture truly scales, others reach the 
bottleneck of accessing the same data by multiple processors



Cluster Architecture

Mem
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CPU

Mem
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…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between 
any pair of nodes
in a rack

2-10 Gbps backbone between racks

In 2011 it was estimated that Google had 1M machines, http://bit.ly/Shh0RO

http://bit.ly/Shh0RO




Example 1: find matching DNA 
sequences

• Given a set of short sequences:

• Find all sequences equal to GATTACGATATTA
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Search algorithm I

GATTACGATATTA
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N = 40 records → 40 comparisons
O(N) algorithm
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Can we do any better?



Search algorithm II GATTACGATATTA

AAAATCCTGCA

AAACGCCTGCA

GATTACGATATTA
TTTTCCCTGCA

TTTACGCCTGC

What if we pre-sort the sequences?



Search algorithm II GATTACGATATTA

AAAATCCTGCA

Binary search: log N time

AAACGCCTGCA

GATTACGATATTA
TTTTCCCTGCA

TTTACGCCTGC

Far better scalability !

CREATE INDEX seq_idx ON sequences (seq)

SELECT seq FROM sequences 
WHERE seq = ‘GATTACGATATTA’



Example 2: read trimming

• Given a set of DNA reads – sequences of 100 characters 
long:

• Trim the final t (bp) characters of each sequence*

• Generate a new dataset of trimmed sequences

*The accuracy of sequencer drops abruptly after a certain length



Short raw DNA reads



Trim algorithm I

• Time 0: TAAAAAAATATTA → TAAAAA

TA
A

A
A

A
A

AT
AT

TA



Trim algorithm I

• Time 1: CACCTAAATATTA → CACCTA
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Trim algorithm I

• The task is fundamentally linear in N: we have to touch every record no 
matter what

Can we do any better?

Will an index help?



Trim algorithm II

• We can break data into K pieces

• Assign each sub-task to a different machine

• Process each piece in parallel

• All work is finished in time N/K



Schema of parallel “read trimming” task

Input: short 
sequences

f f f f f

Distribute 
among K 
computers

Perform 
trimming on 
every read

A big 
distributed set 
of trimmed 
reads



Converting tiff images to png

Tiff images

f f f f f

Distribute 
among K 
computers

Perform 
conversion of 
every file

A big 
distributed set 
of png images

https://aws.amazon.com/blogs/aws/new-york-times/



Simulations with multiple parameters
Sets of 
parameters 
for multiple 
short 
simulations

f f f f f

Distribute the 
parameter set 
among K 
computers

Run simulations 
with given 
parameters

A big 
distributed set 
of simulation 
results

https://www.sciencedaily.com/releases/2013/07/130712102844.htm



Compute word frequency of each 
word in a set of documents

(people, 2)
(government, 6)
(assume, 1)
(history, 2)
…

Single document processing example



Word frequencies

Millions of 
documents

f f f f f

Distribute 
documents 
among K 
computers

For each document 
f returns (word, 
frequency) pairs

A big 
distributed list 
of word 
histograms per 
document



There is a pattern here …

• A function that maps a read to a trimmed read

• A function that maps tiff image to png image

• A function that maps a set of parameters to a simulation 
results

• A function that maps a document to a histogram of word 
frequencies

The idea is to abstract the farming of parallel programs 
into a general framework, where the programmer only 
needs to provide the mapping function itself



Different task:
Compute word frequencies for
all documents

(people, 78)
(government, 123)
(assume, 23)
(history, 38)
…



Word frequencies among all 
documents

Millions of 
documents

map map map map map

Distribute 
documents 
among K 
computers

For each 
document map
returns (word, 
frequency) pairs

A big 
distributed list 
of word 
histograms per 
document? But we don’t want distributed little histograms, 

we want one big histogram



Word frequencies among all 
documents

Millions of 
documents

map map map map map

Distribute 
documents 
among K 
computers

For each 
document map
returns (word, 
frequency) pairs

A big 
distributed list 
of word 
histograms per 
documentWe want that a single computer has access to 

all occurrences of a given word



Word frequencies among all 
documents

map map map map map

Distribute 
documents 
among K 
computers

For each 
document map 
returns (word, 
frequency) pair

A big 
distributed list 
of word 
histograms per 
document

Send each 
frequency pair into 
computer i using 
h(word) % K



Word frequencies among all 
documents

map map map map map

Distribute 
documents 
among K 
computers

For each 
document map
returns (word, 
frequency) pair

A big 
distributed list 
of word 
histograms per 
document

Now each 
computer can 
produce (word, 
frequency) pair for 
all documents

reduce reduce reduce reduce

5 3 5



Word frequencies among all 
documents

map map map map map

Distribute 
documents 
among K 
computers

For each 
document f
returns (word, 
frequency) pair

A big 
distributed list 
of word 
histograms per 
document

We have a 
distributed general 
histogram

reduce reduce reduce reduce

5 3 5



General idea: partitioning by 
hashing

Map

Reduce

Shuffle

Only map and reduce differ from one application to another
Everything else is generic and is implemented in a map-
reduce framework



Map-reduce

• The user writes two functions: map and reduce

• A master controller divides the input data into chunks, and 
assigns different processors to execute the map function on 
each chunk

• Other processors, perhaps the same ones, are then assigned 
to perform the reduce function on chunks of the output 
from the map function



Map-reduce framework

MAP

SHUFFLE REDUCE

User 
Program

Master 
Node

Worker

Worker

Worker

Worker

Worker

Input

fork fork
fork

Assign 
map

Assign 
reduce

Intermediate 
files

Output



Reliable distributed file system

• Data kept in “chunks” spread across machines

• Each chunk replicated on different machines 

• Seamless recovery from disk or machine failure

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0

Chunk servers also serve as compute servers



Map

• The input is in chunks on different nodes

• Map function is forked to the same chunk server where the 
data is

• The output of map function is partitioned by hashing the 
output key: h(key) % R, where R is the number of reducers

• The partitioned output is written to the same local disk on 
a computing node where the input is



Shuffle

• The system then performs shuffling of the intermediate 
(key, value) pairs and sends the data to a corresponding 
reduce node, according to hash(key). All data with the same 
key ends up on the same machine

• Creates Master file to store info about the locations of 
chunks for final output, which will also be distributed across 
chunk servers

• Already at the reducer: produces aggregated lists of values 
for each key



Reduce

• Each node to which a reduce task has been assigned takes 
one key at a time, and performs required operations on the 
corresponding list of values

• The final output is written to a local disk of a reducer, and 
the Master node is notified about where chunks of data 
reside

• The output of a map-reduce program is a distributed file



Example: what does it do?

map (input_key, input_value)

for each word w in input_value

emit_intermediate (w, 1)

reduce (intermediate_key, Iterator intermediate_values)

result: =0

for each v in intermediate_values

result += v

emit (intermediate_key , result)



Example: word count

map (input_key, input_value)

for each word w in input_value

emit_intermediate (w, 1)

reduce (intermediate_key, Iterator intermediate_values)

result: =0

for each v in intermediate_values

result += v

emit (intermediate_key , result)

Without changing the reduce function, 
improve performance of this algorithm



Refinement: Combiners

• Often a map task will produce many pairs of the form 
(k,v1), (k,v2), … for the same key k
• E.g., popular words in the word count example

• Can save network time by pre-aggregating values in 
the mapper:
• Combine (k, list(v1))  (k, v2)

• Works only if reduce function is commutative and 
associative



Word count in Python
def mapper (record):

# key: document identifier

# value: document contents

key = record[0]

value = record[1]

words = value.split()

for w in words:

mr.emit_intermediate(w, 1)

def reducer (key, list_of_values):

# key: word

# value: list of occurrence counts

total = 0

for v in list_of_values:

total += v

mr.emit((key, total))

# To run:

mr = MapReduce.MapReduce()

inputdata = open(sys.argv[1])

mr.execute(inputdata, mapper,  

reducer)

In Java: https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html#Source+Code



Map-reduce solves the following 
issues:
1: Copying data over a network takes time

• Idea:
• Bring computation close to the data. The file chunks are distributed across 

nodes and map programs are forked to the same machine – program comes to 
data

2: Machines fail
• One server may stay up to 3 years (1,000 days)

• If you have 1,000 servers, expect to loose 1/day

• Google had ~1M machines in 2011: 1,000 machines fail every day!

• Idea:
• Store files multiple times for reliability. Each file chunk is replicated in at least 3 

nodes

3: Parallel programming is difficult
• Programmer only needs to provide map and reduce functions which fit the 

problem. Everything else – distribution, hashing, load balancing – is handled by 
the system



What architecture is used for 
map-reduce?

…

interconnect

…

interconnect

interconnect

Shared nothing Shared disk

…

=disk =memory =processor

Shared memory



Map-Reduce
Examples



Example 1: Language Model

• Statistical machine translation:

• Need to count number of times every 5-word sequence 
occurs in a large corpus of documents

• Very easy with MapReduce:

• Map:

• Extract (5-word sequence, count) from document

• Reduce: 

• Combine the counts



Example 2. Integers

• Design MapReduce algorithms to take a very large file of 
integers and produce as output:

(a) The largest integer.

(c) The same set of integers, but with each integer appearing 
only once.

(d) The count of the number of distinct integers in the input.



Max integer
map (file_id, Iterator numbers)

max_local: = MIN_INTEGER              

for each number n in numbers

if (n > max_local)

max_local: = n

emit_intermediate (“max”, max_local)

reduce (single_key, Iterator all_maxes)

max_total: = MIN_INTEGER 

for each number n in all_maxes

if (n > max_total)

max_total : = n

emit (“max_total” , max_total)



Example 3: Inverted index

• Each document has a unique document ID

• Forward index:

• Given doc ID – retrieve document content

• Inverted index:

• From document content to document ID

• Similar (to secondary indexes) idea from information -
retrieval community, but: 

• Record document. 

• Search key presence of a word in a document. 



Inverted index for tweeter

• Input:

• (tweet1, “I love pancakes for breakfast”)

• (tweet2, “I dislike pancakes”)

• (tweet3, “What should I eat for breakfast?”)

• (tweet4, “I love to eat”)

• Output:

• (“pancakes”, [twet1, tweet2])

• (“breakfast”, [tweet1, tweet3])

• (“eat”, [tweet3, tweet4])

• (“love”, [tweet1, tweet4])



Inverted index

map (input_key, input_value)

for each line in input_value

tokens: = split (line)

tweet_id: = tokens[0]

tweet_body: = tokens[1]

for each word in tweet_body

emit_intermediate (word, tweet_id)

reduce (word, Iterator tweet_ids)

Input: distributed file with lines
(tweet_id, tweet_body)

Reduce is empty



Example 4: social network analysis

• Input:

Jim, Sue

Jim, Linn

Linn, Joe

Joe, Linn

Kai, Jim

Jim, Kai

• Output 1 
Following 
(count):

• Jim, 3

• Sue, 0

• Linn, 1

• Joe, 1

• Kai, 1

• Output 2 
Followers 
(count):

• Jim, 1

• Sue, 1

• Linn, 2

• Joe, 1

• Kai, 1

• Output 3 
Friends 
(count):

• Jim, 1

• Sue, 0

• Linn, 1

• Joe, 1

• Kai, 1



Followers: list of followers for 
each user
map (file_name, edges)              

for each edge in edges

emit_intermediate (edge[1], edge[0])

reduce (user_id, Iterator followers)



Example 5. Duplicate elimination
map (file_id, Iterator numbers)                     

for each number n in numbers

emit_intermediate (n, 1)

reduce (unique_number, Iterator all_occurrences)

emit (unique_number , unique_number)



Example 6: PageRank and matrix-
vector multiplication

• Originally, map-reduce was designed for fast computation of 
web page ranks using PageRank algorithm



How to rank web pages

It seems that:

• a problem is the self-referential nature of this definition

• if we follow this line of reasoning, we might find that the 
importance of a web page depends on itself!

Definition: A webpage is important 
if many important pages link to it.



Modeling the web

B

C

D

B

C

D

What can we speculate about the relative 
importance of pages in each of these graphs, 
solely from the structure of the links (which is 
anyways the only information at hand)?



Model: traffic and mindless 
surfing

• Assumptions:

• The WEB site is important if it gets a lot of traffic.

• Let assume that everyone is surfing spending a second 
on each page and then randomly following one of the 
available links to a new page.

• In this scheme it is convenient to make sure a surfer 
cannot get stuck, so we make the following 

STANDING ASSUMPTION: Each page has at least one 
outgoing link.



Stable traffic example

• We start with 10 surfers at each page

• At the first random click, 5 of the surfers at page A, say, go to 
page B, and the other 5 go to page C. So while each site sees 
all 10 of its visitors leave, it gets 5 + 5 incoming visitors to 
replace them: 

• So the amount of traffic at each page remains constant at 10.
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5 5



Unstable traffic example

• We start with 10 surfers in each page

• After the first random click, 10 of the surfers at page A go to 
page B, since there is only 1 outgoing link from A etc…

B

A

C
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15

5

5

5

10

10



Unstable traffic example contd.

• After the two next iterations it becomes

• Where is this leading? Do we ever reach a stable configuration, 

as in the first graph? 
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5

5

5
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5
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5

10
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12.5
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Traffic converges

• While the answer is no, it turns out that the process converges to 
the following distribution, which you can check oscillates around 
these values going forward in time

• This stable distribution is what the PageRank algorithm (in its 
most basic form) uses to assign a rank to each page: The two 
pages with 12 visitors are equally important, and each more 
important than the remaining page having 6 visitors.

12

12

6



Question

• How do we qualitatively explain why two of the pages in this 
model should be ranked equally, even though one has more 
incoming links than the other?

12

12

6

B

A

C



How to compute the stable 
distribution?

B

A

C

1/2

1/2

1

1

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

Table of transitions: 

transition matrix based on outgoing 

links

Links 
from:



Set initial importance for all pages 
to 1

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

B

A

C
Transition matrix

Vector of importance

A 1

B 1

C 1



Iteration 1

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

Transition matrix

Current Vector of importance

A 1

B 1

C 1

A 1*1/2 + 1*1 =1.5

B 1*1 = 1

C 1*1/2 = 1/2

New Vector of importance

From B From C

Find new importance based 
on number of incoming 
visitors and their rank



Iteration 2

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

Transition matrix

Current Vector of importance

A 1.5

B 1

C 0.5

A 1*1/2 + 0.5*1 =1

B 1.5*1 = 1.5

C 1*1/2 = 1/2

New Vector of importance

From B From C

Find new importance based 
on number of incoming 
visitors and their rank



Iteration 3

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

Transition matrix

Current Vector of importance

A 1

B 1.5

C 0.5 A 1.5*1/2 + 0.5*1 =1.25

B 1*1 = 1

C 1.5*1/2 = 0.75

New Vector of importance

From B From C

Each entry of the vector is 
updated based on updated entries 
for other pages – they get 
updated together



Computing matrix-vector 
multiplication

• Each entry of a new vector y is

𝑦𝑖 = 

𝑗=1…𝑛

𝑎𝑖𝑗 ∗ 𝑥𝑗

• In other words, it is a dot product of vector x with the corresponding 
row of matrix A

Note that the matrix is very sparse: each page has a limited number of 
outgoing and incoming links compared to the total number of web 
pages. So we are up to compute several rounds of multiplication of a 
very sparse matrix by a very large vector



Matrix-vector multiplication

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

A - Transition matrix

V k-1 - Current Vector of importance

A 1

B 1.5

C 0.5

A 1.5*1/2 + 0.5*1 =1.25

B 1*1 = 1

C 1.5*1/2 = 0.75

Vk - New Vector of importance

From B From C

The new vector at each iteration is 
the result of matrix-vector 
multiplication:
Vk = A *Vk-1



Basic matrix-vector multiplication 
in map-reduce: input

• Transition matrix (sparse), stored as tuples of type:

(i, j ,Aij)

• Current vector of page importance, stored as tuples of type

(i, vi)



Basic matrix-vector multiplication 
in map-reduce: map

map

for each tuple of type A emit_intermediate (i, (i,j,Aij))

for each tuple of type v 

for j from 1 to n

emit_intermediate (j, (i, vi))

Input: two types of tuples
(i, j ,Aij)
(i, vi)



Step-by-step example: reduce

• At each reducer:

• (1, [(1,2,1/2), (1,3,1), (1,1), (2,1), (3,1)])

• (2, [(2,1,1), (1,1), (2,1), (3,1)])

• (3, [(3,2,1/2), (1,1), (2,1), (3,1)])

Multiply non-zero entries of row 1 of A by 
values of v, sum them up and emit result 
(1, ½+1)



Basic matrix-vector multiplication 
in map-reduce: reduce

• The Reduce function simply sums all the values associated 
with a given row i. The result will be a pair (i, new vi).

We have a distributed file of new 
entries of v: finished one iteration 
of PageRank algorithm



Partitioned Matrix-Vector 
multiplication: main idea

• Partition matrix into strips, partition vector into chunks

• Entries i…j of vector v are multiplied only by columns i…j of matrix A

• We can perform these partial multiplications as an additional 
intermediate step of map-reduce, and sum the results in the final step

• The flexibility of map-reduce is that at each step both input and output 
are a set of key-value pairs

𝑝𝑎𝑟𝑡 1 = σ𝑗=1…2 𝑎𝑖𝑗∗ 𝑣𝑗

𝑦1 = 

𝑗=1…𝑘

𝑝𝑎𝑟𝑡 𝑘



Implementations

• Google

• Not available outside Google

• Hadoop

• An open-source implementation in Java

• Uses HDFS for stable storage

• Download: http://lucene.apache.org/hadoop/

• Aster Data

• Cluster-optimized SQL Database that also implements 
MapReduce

http://lucene.apache.org/hadoop/


Summary

• Learned how to scale out processing of large inputs

• Map-reduce framework allows to implement only 2 

functions and the system takes care of distributing 

computations across multiple machines

• Memory footprint is small. Need to care about the size of 

intermediate outputs – sending them across network may 

dominate the cost

• We can perform relational operations in map reduce, if the 

relations are too big to be processed on a single machine 



Map-reduce vs. RDBMS

• RDBMS
• Declarative query languages
• Schemas
• Logical data independence
• Indexing
• Algebraic optimization
• ACID/Transactions

• Map-reduce
• High scalability
• Fault-tolerance
• “One-person deployment”

Spark, Pig, Hive, 
DryadLINQ – try to 

incorporate this into 
map-reduce


