
Map-Reduce

CMPT 321
FALL 2017

Lecture 08.02
By Marina Barsky

Single Node Architecture

Memory

Disk

CPU

“Classical” Data Processing

RDBMSs are very efficient

All the disk-based algorithms and data
structures have great performance

given the table is < certain size
(typically 100GB)

What if the inputs are much-much larger?

What does scalable mean:
operationally

In the past:

• Out-of-core – large parts of inputs and outputs are on
disk

• External-memory algorithms

• Small memory footprint

• Data is brought in chunks to main memory and the
results are written to a local disk

• You have a guarantee that the algorithm will terminate

“Works even if data does not fit in
main memory on a single machine”

What does scalable mean:
operationally

Now:

• Started from 2000s – no matter how big your server
was, you were not able to bring data fast enough to
memory from disk

• Use 1000s computers and apply them all to the same
problem

“Can make use of 1000s
cheap computers”

Scale out (parallelize) vs. scale up (adding more memory)

What does scalable mean:
algorithmically

In the past:

• O(Nm) - Polynomial-time algorithm → tractable →
scalable

• O(mN) - Exponential → not scalable →not for big inputs,
processing time increases too fast

if you have N data items, you
perform no more than Nm

operations

What does scalable mean:
algorithmically

Now:

• Polynomial-time algorithms must be parallelizable

if you have N data items, you
perform no more than Nm/K
operations for some large K

What does scalable mean:
algorithmically

Future:

• Data is streaming (Large Synoptic Survey telescope – 30
TB/night)

• You have no more than one pass over the data (N) –
make this pass count

• Insert data into some sort of compressed index (log N)

if you have N data items, you
perform no more than N log N

operations

You call an algorithm scalable

• In the past: polynomial-time algorithms

• Now: parallel polynomial-time algorithms

• In the future: streaming algorithms

Motivation: Google Example

• 20+ billion web pages x 20KB = 400+ TB

• 1 computer reads 30-35 MB/sec from disk

~4 months to just read the web!

• ~1,000 hard drives to store the web

• Takes even more to do something useful
with the data!

• A standard architecture for such problems:

• Cluster of commodity Linux nodes

• Commodity network (Ethernet) to connect them

Scalability of parallel architectures

D. J. DeWitt, J. Gray, "Parallel Database Systems: the Future of High Performance
Database Systems", ACM Communications, vol. 35(6), 85-98, June 1992.

…

Logical multi-processor database designs

interconnect

…

interconnect

interconnect

Shared nothing Shared disk

…

=disk =memory =processor

Shared memory

Scalability of parallel architectures

…

Logical multi-processor database designs

interconnect

…

interconnect

interconnect

Shared nothing Shared disk

…

=disk =memory =processor

Shared memory

Only shared nothing architecture truly scales, others reach the
bottleneck of accessing the same data by multiple processors

Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

In 2011 it was estimated that Google had 1M machines, http://bit.ly/Shh0RO

http://bit.ly/Shh0RO

Example 1: find matching DNA
sequences

• Given a set of short sequences:

• Find all sequences equal to GATTACGATATTA

Search algorithm I

GATTACGATATTA

TA
A

A
A

A
A

AT
AT

TA

G
AT

TA
C

G
AT

AT
TA

Search algorithm I

GATTACGATATTA

G
AT

TA
C

G
AT

AT
TA

Step 20: found

TA
A

A
A

A
A

AT
AT

TA

Search algorithm I

GATTACGATATTA

G
AT

TA
C

G
AT

AT
TA

N = 40 records → 40 comparisons
O(N) algorithm

TA
A

A
A

A
A

AT
AT

TA

Search algorithm I

GATTACGATATTA

G
AT

TA
C

G
AT

AT
TA

N = 40 records → 40 comparisons
O(N) algorithm

TA
A

A
A

A
A

AT
AT

TA

Can we do any better?

Search algorithm II GATTACGATATTA

AAAATCCTGCA

AAACGCCTGCA

GATTACGATATTA
TTTTCCCTGCA

TTTACGCCTGC

What if we pre-sort the sequences?

Search algorithm II GATTACGATATTA

AAAATCCTGCA

Binary search: log N time

AAACGCCTGCA

GATTACGATATTA
TTTTCCCTGCA

TTTACGCCTGC

Far better scalability !

CREATE INDEX seq_idx ON sequences (seq)

SELECT seq FROM sequences
WHERE seq = ‘GATTACGATATTA’

Example 2: read trimming

• Given a set of DNA reads – sequences of 100 characters
long:

• Trim the final t (bp) characters of each sequence*

• Generate a new dataset of trimmed sequences

*The accuracy of sequencer drops abruptly after a certain length

Short raw DNA reads

Trim algorithm I

• Time 0: TAAAAAAATATTA → TAAAAA

TA
A

A
A

A
A

AT
AT

TA

Trim algorithm I

• Time 1: CACCTAAATATTA → CACCTA

C
A

C
C

TA
A

AT
AT

TA

Trim algorithm I

• The task is fundamentally linear in N: we have to touch every record no
matter what

Can we do any better?

Will an index help?

Trim algorithm II

• We can break data into K pieces

• Assign each sub-task to a different machine

• Process each piece in parallel

• All work is finished in time N/K

Schema of parallel “read trimming” task

Input: short
sequences

f f f f f

Distribute
among K
computers

Perform
trimming on
every read

A big
distributed set
of trimmed
reads

Converting tiff images to png

Tiff images

f f f f f

Distribute
among K
computers

Perform
conversion of
every file

A big
distributed set
of png images

https://aws.amazon.com/blogs/aws/new-york-times/

Simulations with multiple parameters
Sets of
parameters
for multiple
short
simulations

f f f f f

Distribute the
parameter set
among K
computers

Run simulations
with given
parameters

A big
distributed set
of simulation
results

https://www.sciencedaily.com/releases/2013/07/130712102844.htm

Compute word frequency of each
word in a set of documents

(people, 2)
(government, 6)
(assume, 1)
(history, 2)
…

Single document processing example

Word frequencies

Millions of
documents

f f f f f

Distribute
documents
among K
computers

For each document
f returns (word,
frequency) pairs

A big
distributed list
of word
histograms per
document

There is a pattern here …

• A function that maps a read to a trimmed read

• A function that maps tiff image to png image

• A function that maps a set of parameters to a simulation
results

• A function that maps a document to a histogram of word
frequencies

The idea is to abstract the farming of parallel programs
into a general framework, where the programmer only
needs to provide the mapping function itself

Different task:
Compute word frequencies for
all documents

(people, 78)
(government, 123)
(assume, 23)
(history, 38)
…

Word frequencies among all
documents

Millions of
documents

map map map map map

Distribute
documents
among K
computers

For each
document map
returns (word,
frequency) pairs

A big
distributed list
of word
histograms per
document? But we don’t want distributed little histograms,

we want one big histogram

Word frequencies among all
documents

Millions of
documents

map map map map map

Distribute
documents
among K
computers

For each
document map
returns (word,
frequency) pairs

A big
distributed list
of word
histograms per
documentWe want that a single computer has access to

all occurrences of a given word

Word frequencies among all
documents

map map map map map

Distribute
documents
among K
computers

For each
document map
returns (word,
frequency) pair

A big
distributed list
of word
histograms per
document

Send each
frequency pair into
computer i using
h(word) % K

Word frequencies among all
documents

map map map map map

Distribute
documents
among K
computers

For each
document map
returns (word,
frequency) pair

A big
distributed list
of word
histograms per
document

Now each
computer can
produce (word,
frequency) pair for
all documents

reduce reduce reduce reduce

5 3 5

Word frequencies among all
documents

map map map map map

Distribute
documents
among K
computers

For each
document f
returns (word,
frequency) pair

A big
distributed list
of word
histograms per
document

We have a
distributed general
histogram

reduce reduce reduce reduce

5 3 5

General idea: partitioning by
hashing

Map

Reduce

Shuffle

Only map and reduce differ from one application to another
Everything else is generic and is implemented in a map-
reduce framework

Map-reduce

• The user writes two functions: map and reduce

• A master controller divides the input data into chunks, and
assigns different processors to execute the map function on
each chunk

• Other processors, perhaps the same ones, are then assigned
to perform the reduce function on chunks of the output
from the map function

Map-reduce framework

MAP

SHUFFLE REDUCE

User
Program

Master
Node

Worker

Worker

Worker

Worker

Worker

Input

fork fork
fork

Assign
map

Assign
reduce

Intermediate
files

Output

Reliable distributed file system

• Data kept in “chunks” spread across machines

• Each chunk replicated on different machines

• Seamless recovery from disk or machine failure

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0

Chunk servers also serve as compute servers

Map

• The input is in chunks on different nodes

• Map function is forked to the same chunk server where the
data is

• The output of map function is partitioned by hashing the
output key: h(key) % R, where R is the number of reducers

• The partitioned output is written to the same local disk on
a computing node where the input is

Shuffle

• The system then performs shuffling of the intermediate
(key, value) pairs and sends the data to a corresponding
reduce node, according to hash(key). All data with the same
key ends up on the same machine

• Creates Master file to store info about the locations of
chunks for final output, which will also be distributed across
chunk servers

• Already at the reducer: produces aggregated lists of values
for each key

Reduce

• Each node to which a reduce task has been assigned takes
one key at a time, and performs required operations on the
corresponding list of values

• The final output is written to a local disk of a reducer, and
the Master node is notified about where chunks of data
reside

• The output of a map-reduce program is a distributed file

Example: what does it do?

map (input_key, input_value)

for each word w in input_value

emit_intermediate (w, 1)

reduce (intermediate_key, Iterator intermediate_values)

result: =0

for each v in intermediate_values

result += v

emit (intermediate_key , result)

Example: word count

map (input_key, input_value)

for each word w in input_value

emit_intermediate (w, 1)

reduce (intermediate_key, Iterator intermediate_values)

result: =0

for each v in intermediate_values

result += v

emit (intermediate_key , result)

Without changing the reduce function,
improve performance of this algorithm

Refinement: Combiners

• Often a map task will produce many pairs of the form
(k,v1), (k,v2), … for the same key k
• E.g., popular words in the word count example

• Can save network time by pre-aggregating values in
the mapper:
• Combine (k, list(v1)) (k, v2)

• Works only if reduce function is commutative and
associative

Word count in Python
def mapper (record):

key: document identifier

value: document contents

key = record[0]

value = record[1]

words = value.split()

for w in words:

mr.emit_intermediate(w, 1)

def reducer (key, list_of_values):

key: word

value: list of occurrence counts

total = 0

for v in list_of_values:

total += v

mr.emit((key, total))

To run:

mr = MapReduce.MapReduce()

inputdata = open(sys.argv[1])

mr.execute(inputdata, mapper,

reducer)

In Java: https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html#Source+Code

Map-reduce solves the following
issues:
1: Copying data over a network takes time

• Idea:
• Bring computation close to the data. The file chunks are distributed across

nodes and map programs are forked to the same machine – program comes to
data

2: Machines fail
• One server may stay up to 3 years (1,000 days)

• If you have 1,000 servers, expect to loose 1/day

• Google had ~1M machines in 2011: 1,000 machines fail every day!

• Idea:
• Store files multiple times for reliability. Each file chunk is replicated in at least 3

nodes

3: Parallel programming is difficult
• Programmer only needs to provide map and reduce functions which fit the

problem. Everything else – distribution, hashing, load balancing – is handled by
the system

What architecture is used for
map-reduce?

…

interconnect

…

interconnect

interconnect

Shared nothing Shared disk

…

=disk =memory =processor

Shared memory

Map-Reduce
Examples

Example 1: Language Model

• Statistical machine translation:

• Need to count number of times every 5-word sequence
occurs in a large corpus of documents

• Very easy with MapReduce:

• Map:

• Extract (5-word sequence, count) from document

• Reduce:

• Combine the counts

Example 2. Integers

• Design MapReduce algorithms to take a very large file of
integers and produce as output:

(a) The largest integer.

(c) The same set of integers, but with each integer appearing
only once.

(d) The count of the number of distinct integers in the input.

Max integer
map (file_id, Iterator numbers)

max_local: = MIN_INTEGER

for each number n in numbers

if (n > max_local)

max_local: = n

emit_intermediate (“max”, max_local)

reduce (single_key, Iterator all_maxes)

max_total: = MIN_INTEGER

for each number n in all_maxes

if (n > max_total)

max_total : = n

emit (“max_total” , max_total)

Example 3: Inverted index

• Each document has a unique document ID

• Forward index:

• Given doc ID – retrieve document content

• Inverted index:

• From document content to document ID

• Similar (to secondary indexes) idea from information -
retrieval community, but:

• Record document.

• Search key presence of a word in a document.

Inverted index for tweeter

• Input:

• (tweet1, “I love pancakes for breakfast”)

• (tweet2, “I dislike pancakes”)

• (tweet3, “What should I eat for breakfast?”)

• (tweet4, “I love to eat”)

• Output:

• (“pancakes”, [twet1, tweet2])

• (“breakfast”, [tweet1, tweet3])

• (“eat”, [tweet3, tweet4])

• (“love”, [tweet1, tweet4])

Inverted index

map (input_key, input_value)

for each line in input_value

tokens: = split (line)

tweet_id: = tokens[0]

tweet_body: = tokens[1]

for each word in tweet_body

emit_intermediate (word, tweet_id)

reduce (word, Iterator tweet_ids)

Input: distributed file with lines
(tweet_id, tweet_body)

Reduce is empty

Example 4: social network analysis

• Input:

Jim, Sue

Jim, Linn

Linn, Joe

Joe, Linn

Kai, Jim

Jim, Kai

• Output 1
Following
(count):

• Jim, 3

• Sue, 0

• Linn, 1

• Joe, 1

• Kai, 1

• Output 2
Followers
(count):

• Jim, 1

• Sue, 1

• Linn, 2

• Joe, 1

• Kai, 1

• Output 3
Friends
(count):

• Jim, 1

• Sue, 0

• Linn, 1

• Joe, 1

• Kai, 1

Followers: list of followers for
each user
map (file_name, edges)

for each edge in edges

emit_intermediate (edge[1], edge[0])

reduce (user_id, Iterator followers)

Example 5. Duplicate elimination
map (file_id, Iterator numbers)

for each number n in numbers

emit_intermediate (n, 1)

reduce (unique_number, Iterator all_occurrences)

emit (unique_number , unique_number)

Example 6: PageRank and matrix-
vector multiplication

• Originally, map-reduce was designed for fast computation of
web page ranks using PageRank algorithm

How to rank web pages

It seems that:

• a problem is the self-referential nature of this definition

• if we follow this line of reasoning, we might find that the
importance of a web page depends on itself!

Definition: A webpage is important
if many important pages link to it.

Modeling the web

B

C

D

B

C

D

What can we speculate about the relative
importance of pages in each of these graphs,
solely from the structure of the links (which is
anyways the only information at hand)?

Model: traffic and mindless
surfing

• Assumptions:

• The WEB site is important if it gets a lot of traffic.

• Let assume that everyone is surfing spending a second
on each page and then randomly following one of the
available links to a new page.

• In this scheme it is convenient to make sure a surfer
cannot get stuck, so we make the following

STANDING ASSUMPTION: Each page has at least one
outgoing link.

Stable traffic example

• We start with 10 surfers at each page

• At the first random click, 5 of the surfers at page A, say, go to
page B, and the other 5 go to page C. So while each site sees
all 10 of its visitors leave, it gets 5 + 5 incoming visitors to
replace them:

• So the amount of traffic at each page remains constant at 10.

B

A

C

10

10

10

10

10

10

5

5

5

5

5 5

Unstable traffic example

• We start with 10 surfers in each page

• After the first random click, 10 of the surfers at page A go to
page B, since there is only 1 outgoing link from A etc…

B

A

C

10

10

10

10

15

5

5

5

10

10

Unstable traffic example contd.

• After the two next iterations it becomes

• Where is this leading? Do we ever reach a stable configuration,

as in the first graph?

10

15

5

5

5

5

15

15

10

5

7.5

7.5

5

10

10

12.5

7.5

Traffic converges

• While the answer is no, it turns out that the process converges to
the following distribution, which you can check oscillates around
these values going forward in time

• This stable distribution is what the PageRank algorithm (in its
most basic form) uses to assign a rank to each page: The two
pages with 12 visitors are equally important, and each more
important than the remaining page having 6 visitors.

12

12

6

Question

• How do we qualitatively explain why two of the pages in this
model should be ranked equally, even though one has more
incoming links than the other?

12

12

6

B

A

C

How to compute the stable
distribution?

B

A

C

1/2

1/2

1

1

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

Table of transitions:

transition matrix based on outgoing

links

Links
from:

Set initial importance for all pages
to 1

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

B

A

C
Transition matrix

Vector of importance

A 1

B 1

C 1

Iteration 1

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

Transition matrix

Current Vector of importance

A 1

B 1

C 1

A 1*1/2 + 1*1 =1.5

B 1*1 = 1

C 1*1/2 = 1/2

New Vector of importance

From B From C

Find new importance based
on number of incoming
visitors and their rank

Iteration 2

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

Transition matrix

Current Vector of importance

A 1.5

B 1

C 0.5

A 1*1/2 + 0.5*1 =1

B 1.5*1 = 1.5

C 1*1/2 = 1/2

New Vector of importance

From B From C

Find new importance based
on number of incoming
visitors and their rank

Iteration 3

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

Transition matrix

Current Vector of importance

A 1

B 1.5

C 0.5 A 1.5*1/2 + 0.5*1 =1.25

B 1*1 = 1

C 1.5*1/2 = 0.75

New Vector of importance

From B From C

Each entry of the vector is
updated based on updated entries
for other pages – they get
updated together

Computing matrix-vector
multiplication

• Each entry of a new vector y is

𝑦𝑖 =

𝑗=1…𝑛

𝑎𝑖𝑗 ∗ 𝑥𝑗

• In other words, it is a dot product of vector x with the corresponding
row of matrix A

Note that the matrix is very sparse: each page has a limited number of
outgoing and incoming links compared to the total number of web
pages. So we are up to compute several rounds of multiplication of a
very sparse matrix by a very large vector

Matrix-vector multiplication

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

A - Transition matrix

V k-1 - Current Vector of importance

A 1

B 1.5

C 0.5

A 1.5*1/2 + 0.5*1 =1.25

B 1*1 = 1

C 1.5*1/2 = 0.75

Vk - New Vector of importance

From B From C

The new vector at each iteration is
the result of matrix-vector
multiplication:
Vk = A *Vk-1

Basic matrix-vector multiplication
in map-reduce: input

• Transition matrix (sparse), stored as tuples of type:

(i, j ,Aij)

• Current vector of page importance, stored as tuples of type

(i, vi)

Basic matrix-vector multiplication
in map-reduce: map

map

for each tuple of type A emit_intermediate (i, (i,j,Aij))

for each tuple of type v

for j from 1 to n

emit_intermediate (j, (i, vi))

Input: two types of tuples
(i, j ,Aij)
(i, vi)

Step-by-step example: reduce

• At each reducer:

• (1, [(1,2,1/2), (1,3,1), (1,1), (2,1), (3,1)])

• (2, [(2,1,1), (1,1), (2,1), (3,1)])

• (3, [(3,2,1/2), (1,1), (2,1), (3,1)])

Multiply non-zero entries of row 1 of A by
values of v, sum them up and emit result
(1, ½+1)

Basic matrix-vector multiplication
in map-reduce: reduce

• The Reduce function simply sums all the values associated
with a given row i. The result will be a pair (i, new vi).

We have a distributed file of new
entries of v: finished one iteration
of PageRank algorithm

Partitioned Matrix-Vector
multiplication: main idea

• Partition matrix into strips, partition vector into chunks

• Entries i…j of vector v are multiplied only by columns i…j of matrix A

• We can perform these partial multiplications as an additional
intermediate step of map-reduce, and sum the results in the final step

• The flexibility of map-reduce is that at each step both input and output
are a set of key-value pairs

𝑝𝑎𝑟𝑡 1 = σ𝑗=1…2 𝑎𝑖𝑗∗ 𝑣𝑗

𝑦1 =

𝑗=1…𝑘

𝑝𝑎𝑟𝑡 𝑘

Implementations

• Google

• Not available outside Google

• Hadoop

• An open-source implementation in Java

• Uses HDFS for stable storage

• Download: http://lucene.apache.org/hadoop/

• Aster Data

• Cluster-optimized SQL Database that also implements
MapReduce

http://lucene.apache.org/hadoop/

Summary

• Learned how to scale out processing of large inputs

• Map-reduce framework allows to implement only 2

functions and the system takes care of distributing

computations across multiple machines

• Memory footprint is small. Need to care about the size of

intermediate outputs – sending them across network may

dominate the cost

• We can perform relational operations in map reduce, if the

relations are too big to be processed on a single machine

Map-reduce vs. RDBMS

• RDBMS
• Declarative query languages
• Schemas
• Logical data independence
• Indexing
• Algebraic optimization
• ACID/Transactions

• Map-reduce
• High scalability
• Fault-tolerance
• “One-person deployment”

Spark, Pig, Hive,
DryadLINQ – try to

incorporate this into
map-reduce

