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CHAPTER 1

Why Semantics?

Natural language is amazing. Without any effort you can ask a stranger how to find the
nearest coffee shop; you can share your knowledge of music and martini making with
your community of friends; you can go to the library, pick up a book, and learn from
an author who lived hundreds of years ago. It is hard to imagine a better API for
knowledge.

As a simple example, think about the following two sentences. Both are of the form
“subject-verb-object,” one of the simplest possible grammatical structures:

1. Colin enjoys mushrooms.

2. Mushrooms scare Jamie.

Each of these sentences represents a piece of information. The words “Jamie” and
“Colin” refer to specific people, the word “mushroom” refers to a class of organisms,
and the words “enjoys” and “scare” tell you the relationship between the person and
the organism. Because you know from previous experience what the verbs “enjoy” and
“scare” mean, and you’ve probably seen a mushroom before, you’re able to understand
the two sentences. And now that you’ve read them, you’re equipped with new knowl-
edge of the world. This is an example of semantics: symbols can refer to things or
concepts, and sequences of symbols convey meaning. You can now use the meaning
that you derived from the two sentences to answer simple questions such as “Who likes
mushrooms?”

Semantics is the process of communicating enough meaning to result in an action. A
sequence of symbols can be used to communicate meaning, and this communication
can then affect behavior. For example, as you read this page, you are integrating the
ideas expressed in these words with all that you already know. If the semantics of our
writing in this book is clear, it should help you create new software, solve hard prob-
lems, and do great things.

But this book isn’t about natural language; rather, it’s about using semantics to repre-
sent, combine, and share knowledge between communities of machines, and how to
write systems that act on that knowledge.
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If you have ever written a program that used even a single variable, then you have
programmed with semantics. As a programmer, you knew that this variable represented
a value, and you built your program to respond to changes in the variable. Hopefully
you also provided some comments in the code that explained what the variable repre-
sented and where it was used so other programmers could understand your code more
easily. This relationship between the value of the variable, the meaning of the value,
and the action of the program is important, but it’s also implicit in the design of the
system.

With a little work you can make the semantic relationships in your data explicit, and
program in a way that allows the behavior of your systems to change based on the
meaning of the data. With the semantics made explicit, other programs, even those not
written by you, can seamlessly use your data. Similarly, when you write programs that
understand semantic data, your programs can operate on datasets that you didn’t
anticipate when you designed your system.

Data Integration Across the Web
For applications that run on a single machine, documenting the semantics of variables
in comments and documentation is adequate. The only people who need to understand
the meaning of a variable are the programmers reading the source code. However, when
applications participate in larger networks, the meanings of the messages they exchange
need to be explicit.

Before the World Wide Web, when a user wanted to use an Internet application, he
would install a tool capable of handling specific types of network messages on his
machine. If a user wanted to locate users on other networks, he would install an
application capable of utilizing the FINGER protocol. If a user wanted to exchange
email across a network, he would install an application capable of utilizing the SMTP
protocol. Each tool understood the message formats and protocols specific to its task
and knew how best to display the information to the user.

Application developers would agree on the format of the messages and the behavior of
applications through the circulation of RFC (Request For Comments) documents.
These RFCs were written in English and made the semantics of the data contained in
the messages explicit, frequently walking the reader through sample data exchanges to
eliminate ambiguity. Over time, the developer community would refine the semantics
of the messages to improve the capabilities of the applications. RFCs would be amended
to reflect the new semantics, and application developers would update applications to
make use of the new messages. Eventually users would update the applications on their
machines and benefit from these new capabilities.

The emergence of the Web represented a radical change in how most people used the
Internet. The Web shielded users from having to think about the applications handling
the Internet messages. All you had to do was install a web browser on your machine,
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and any application on the Web was at your command. For developers, the Web
provided a single, simple abstraction for delivering applications and made it possible
for an application running in a fixed location and maintained by a stable set of devel-
opers to service all Internet users.

Underlying the Web is a set of messages that developers of web infrastructure have
agreed to treat in a standard manner. It is well understood that when a web server
speaking HTTP receives a GET request, it should send back data corresponding to the
path portion of the request message. The semantics of these messages have been thor-
oughly defined by standards committees and documented in RFCs and W3C recom-
mendations. This standardized infrastructure allows web application developers to
operate behind a facade that separates them from the details of how application data
is transmitted between machines, and focus on how their applications appear to users.
Web application developers no longer need to coordinate with other developers about
message formats or how applications should behave in the presence of certain data.

While this facade has facilitated an explosion in applications available to users, the
decoupling of data transmission from applications has caused data to become com-
partmentalized into stovepipe systems, hidden behind web interfaces. The web facade
has, in effect, prevented much of the data fueling web applications from being shared
and integrated into other Internet applications.

Applications that combine data in new ways and allow users to make connections and
understand relationships that were previously hidden are very powerful and compel-
ling. These applications can be as simple as plotting crime statistics on a map or as
informative as showing which cuisines are available within walking distance of a film
that you want to watch. But currently the process to build these applications is highly
specialized and idiosyncratic, with each application using hand-tuned and ad-hoc
techniques for harvesting and integrating information due to the hidden nature of data
on the Web.

This book introduces repeatable approaches to these data integration problems
through the use of simple mechanisms that explicitly expose the semantics of data.
These mechanisms provide standardized ways for data to be published and combined,
allowing developers to focus on building data-rich applications rather than getting
stuck on problems of obtaining and integrating data.

Traditional Data-Modeling Methods
There are many ways to model data, some of them very well researched and mature.
In this book we explore new ways to model data, but we’re certainly not trying to
convince you that the old ways are wrong. There are many ways to think about data,
and it is important to have a wide range of tools available so you can pick the best one
for the task at hand.
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In this section, we’ll look at common methods that you’ve likely encountered and con-
sider their strengths and weaknesses when it comes to integrating data across the Web
and in the face of quickly changing requirements.

Tabular Data
The simplest kind of dataset, and one that almost everyone is familiar with, is tabular
data. Tabular data is any data kept in a table, such as an Excel spreadsheet or an HTML
table. Tabular data has the advantage of being very simple to read and manipulate.
Consider the restaurant data shown in Table 1-1.

Table 1-1. A table of restaurants

Restaurant Address Cuisine Price Open

Deli Llama Peachtree Rd Deli $ Mon, Tue, Wed, Thu, Fri

Peking Inn Lake St Chinese $$$ Thu, Fri, Sat

Thai Tanic Branch Dr Thai $$ Tue, Wed, Thu, Fri, Sat, Sun

Lord of the Fries Flower Ave Fast Food $$ Tue, Wed, Thu, Fri, Sat, Sun

Marquis de Salade Main St French $$$ Thu, Fri, Sat

Wok This Way Second St Chinese $ Mon, Tue, Wed, Thu, Fri, Sat, Sun

Luna Sea Autumn Dr Seafood $$$ Tue, Thu, Fri, Sat

Pita Pan Thunder Rd Middle Eastern $$ Mon, Tue, Wed, Thu, Fri, Sat, Sun

Award Weiners Dorfold Mews Fast Food $ Mon, Tue, Wed, Thu, Fri, Sat

Lettuce Eat Rustic Parkway Deli $$ Mon, Tue, Wed, Thu, Fri

Data kept in a table is generally easy to display, sort, print, and edit. In fact, you might
not even think of data in an Excel spreadsheet as “modeled” at all, but the placement
of the data in rows and columns gives each piece a particular meaning. Unlike the
modeling methods we’ll see later, there’s not really much variation in the ways you
might look at tabular data. It’s often said that most “databases” used in business settings
are simply spreadsheets.

It’s interesting to note that there are semantics in a data table or spreadsheet: the row
and column in which you choose to put the data—for example, a restaurant’s cuisine—
explains what the name means to a person reading the data. The fact that Chinese is in
the row Peking Inn and in the column Cuisine tells us immediately that “Peking Inn
serves Chinese food.” You know this because you understand what restaurants and
cuisines are and because you’ve previously learned how to read a table. This may seem
like a trivial point, but it’s important to keep in mind as we explore different ways to
think about data.
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Data stored this way has obvious limitations. Consider the last column, Open. You can
see that we’ve crammed a list of days of the week into a single column. This is fine if
all we’re planning to do is read the table, but it breaks down if we want to add more
information such as the open hours or nightly specials. In theory, it’s possible to add
this information in parentheses after the days, as shown in Table 1-2.

Table 1-2. Forcing too much data into a spreadsheet

Restaurant Address Cuisine Price Open

Deli Llama Peachtree Rd Deli $ Mon (11a–4p), Tue (11–4), Wed (11–4), Thu (11–7), Fri (11–8)

Peking Inn Lake St Chinese $$$ Thu (5p–10p), Fri (5–11), Sat (5–11)

However, we can’t use this data in a spreadsheet program to find the restaurants that
will be open late on Friday night. Sorting on the columns simply doesn’t capture the
deeper meaning of the text we’ve entered. The program doesn’t understand that we’ve
used individual fields in the Open column to store multiple distinct information values.

The problems with spreadsheets are compounded when we have multiple spreadsheets
that make reference to the same data. For instance, if we have a spreadsheet of our
friends’ reviews of the restaurants listed earlier, there would be no easy way to search
across both documents to find restaurants near our homes that our friends recommend.
Although Excel experts can often use macros and lookup tables to get the spreadsheet
to approximate this desired behavior, the models are rigid, limited, and usually not
changeable by other users.

The need for a more sophisticated way to model data becomes obvious very quickly.

Relational Data
It’s almost impossible for a programmer to be unfamiliar with relational databases,
which are used in all kinds of applications in every industry. Products like Oracle DB,
MySQL, and PostgreSQL are very mature and are the result of years of research and
optimization. Relational databases are very fast and powerful tools for storing large sets
of data where the data model is well understood and the usage patterns are fairly
predictable.

Essentially, a relational database allows multiple tables to be joined in a standardized
way. To store our restaurant data, we might define a schema like the one shown in
Figure 1-1. This allows our restaurant data to be represented in a more useful and
flexible way, as shown in Figure 1-2.

Traditional Data-Modeling Methods | 7

Download at Boykma.Com



Figure 1-1. Simple restaurant schema

Figure 1-2. Relational restaurant data

Now, instead of sorting or filtering on a single column, we can do more sophisticated
queries. A query to find all the restaurants that will be open at 10 p.m. on a Friday can
be expressed using SQL like this:

SELECT Restaurant.Name, Cuisine.Name, Hours.Open, Hours.Close
FROM Restaurant, Cuisine, Hours
WHERE Restaurant.CuisineID=Cuisine.ID
AND Restaurant.ID=Hours.RestaurantID
AND Hours.Day="Fri"
AND Hours.Open<22
AND Hours.Close>22
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which gives a result like this:

Restaurant.Name   |   Cuisine.Name    |    Hours.Open   |   Hours.Close   |
----------------------------------------------------------------------------
Peking Inn        |   Chinese         |    17           |   23            |

Notice that in our relational data model, the semantics of the data have been made
more explicit. The meanings of the values are actually described by the schema: some-
one looking at the tables can immediately see that there are several types of entities
modeled—a type called “restaurant” and a type called “days”—and that they have
specific relationships between them. Furthermore, even though the database doesn’t
really know what a “restaurant” is, it can respond to requests to see all the restaurants
with given properties. Each datum is labeled with what it means by virtue of the table
and column that it’s in.

Evolving and Refactoring Schemas
The previous section mentioned that relational databases are great for datasets where
the data model is understood up front and there is some understanding of how the data
will be used. Many applications, such as product catalogs or contact lists, lend them-
selves well to relational schemas, since there are generally a fixed set of fields and a set
of fairly typical usage patterns.

However, as we’ve been discussing, data integration across the Web is characterized
by rapidly changing types of data, and programmers can never quite know what will
be available and how people might want to use it. As a simple example, let’s assume
we have our restaurant database up and running, and then we receive a new database
of bars with additional information not in our restaurant schema, as shown in Table 1-3.

Table 1-3. A new dataset of bars

Bar Address DJ Specialty drink

The Bitter End 14th Ave No Beer

Peking Inn Lake St No Scorpion Bowl

Hammer Time Wildcat Dr Yes Hennessey

Marquis de Salade Main St Yes Martini

Of course, many restaurants also have bars, and as it gets later in the evening, they may
stop serving food entirely and only serve drinks. The table of bars in this case shows
that, in addition to being a French restaurant, Marquis de Salade is also a bar with a
DJ. The table also shows specialty drinks, which gives us additional information about
Marquis. As of right now, these databases are separate, but it’s certainly possible that
someone might want to query across them—for example, to find a place to get a French
meal and stay later for martinis.
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So how do we update our database so that it supports the new bar data? Well, we could
just link the tables with another table, which has the upside of not forcing us to change
the existing structure. Figure 1-3 shows a database structure with an additional table,
RB_Link, that links the existing tables, telling you when a restaurant and a bar are
actually the same place.

Figure 1-3. Linking bars to the existing schema

This works, and certainly makes our query possible, but it introduces a problem: there
are now two names and addresses in our database for establishments that are both bars
and restaurants, and just a link telling us that they’re the same place. If you want to
query by address, you need to look at both tables. Also, the type of food served is
attached to the restaurant type, but not to its bar type. Adding and updating data is
much more complicated.

Perhaps a more accurate way to model this would be to have a Venue table with bar
and restaurant types separated out, like the one shown in Figure 1-4.

Figure 1-4. Normalized schema that separates a venue from its purposes
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This seems to solve our issues, but remember that all the existing data is still in our old
data model and needs to be transformed to the new data model. This process is called 
schema migration and is often a huge headache. Not only does the data have to be
migrated, but all the queries and dependent code that was written assuming a certain
table structure have to be changed as well. If we have built a restaurant website on top
of our old schema, then we need to figure out how to update all of our existing code,
queries, and the database without imposing significant downtime on the website. A
whole discipline of software engineering has emerged to deal with these issues, using
techniques like stored database procedures and object-relational mapping (ORM) lay-
ers to try to decouple the underlying schema from the business-logic layer and lowering
the cost of schema changes. These techniques are useful, but they impose their own
complexities and problems as well.

It’s easy to imagine that, as our restaurant application matures, these venues could also
have all kinds of other uses such as a live music hall or a rental space for events. When
dealing with data integration across the entire Web, or even in smaller environments
that are constantly facing new datasets, migrating the schema each time a new type of
data is encountered is simply not tractable. Too often, people have to resort to manual
lookups, overly convoluted linked spreadsheets, or just setting the data aside until they
can decide what to do with it.

Very Complicated Schemas
In addition to having to migrate as the data evolves, another problem one runs into
with relational databases is that the schemas can get incredibly complicated when
dealing with many different kinds of data. For example, Figure 1-5 shows a small section
of the schema for a Customer Relationship Management (CRM) product.

A CRM system is used to store information about customer leads and relationships
with current customers. This is obviously a big application, but to put things in per-
spective, it is a very small piece of what is required to run a business. An ERP (Enterprise
Resource Planning) application, such as SAP, can cover many more of the data needs
of a large business. However, the schemas for ERP applications are so inaccessible that
there is a whole industry of consulting companies that exclusively deal with them.

The complexity is barely manageable in well-understood industry domains like CRM
and ERP, but it becomes even worse in rapidly evolving fields such as biotechnology
and international development. Instead of a few long lists of well-characterized data,
we instead have hundreds or thousands of datasets, all of which talk about very different
things. Trying to normalize these to a single schema is a labor-intensive and painful
process.
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Figure 1-5. Example of a big schema

Getting It Right the First Time
This brings us to the question of whether it’s possible to define a schema so that it’s
flexible enough to handle a wide variety of ever-changing types of data, while still
maintaining a certain level of readability. Maybe the schema could be designed to be
open to new venue purposes and offer custom fields for them, something like Fig-
ure 1-6. The schema has lost the concepts of bars and restaurants entirely, now con-
taining just a list of venues and custom properties for them.
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Figure 1-6. Venue schema with completely custom properties

This is not usually recommended, as it gets rid of a lot of the normalization that was
possible before and will likely degrade the performance of the database. However, it
allows us to express the data in a way that allows for new venue purposes to come
along, an example of which is shown in Figure 1-7. Notice how the Properties table
contains all the custom information for each of the venues.

Figure 1-7. Venue data in more flexible form

This means that the application can be extended to include, for example, concert ven-
ues. Maybe we’re visiting a city and looking for a place to stay close to cheap food and
cool concert venues. We could create new fields in the Field table, and then add custom
properties to any of the existing venues. Figure 1-8 shows an example where we’ve
added the information that Thai Tanic has live jazz music. There are two extra fields,
“Live Music?” and “Music Genre”, and two more rows in the Properties table.
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Figure 1-8. Adding a concert venue without changing the schema

This type of key/value schema extension is nothing new, and many people stumble into
this kind of representation when they have sparse relationships to represent. In fact,
many “customizable” data applications such as Saleforce.com represent data this way
internally. However, because this type of representation turns the database tables “on
their sides,” database performance frequently suffers, and therefore it is generally not
considered a good idea (i.e., best practice). We’ve also lost a lot of the normalization
we were able to do before, because we’ve flattened everything to key/value pairs.

Semantic Relationships
Even though it might not be considered a best practice, let’s continue with this pro-
gression and see what happens. Why not move all the relationships expressed in stand-
ard table rows into this parameterized key/value format? From this perspective, the
venue name and address are just properties of the venue, so let’s move the columns in
the Venue table into key/value rows in the Properties table. Figure 1-9 shows what this
might look like.
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Figure 1-9. Parameterized venues

That’s interesting, but the relationship between the Properties table and the Field table
is still only known through the knowledge trapped in the logic of our join query. Let’s
make that knowledge explicit by preforming the join and displaying the result set in
the same parameterized way (Table 1-4).

Table 1-4. Fully parameterized venues

Properties

VenueID Field Value

1 Cuisine Deli

1 Price $

1 Name Deli Llama

1 Address Peachtree Rd

2 Cuisine Chinese

2 Price $$$

2 Specialty Cocktail Scorpion Bowl

2 DJ? No

2 Name Peking Inn

2 Address Lake St

3 Live Music? Yes

3 Music Genre Jazz

3 Name Thai Tanic

3 Address Branch Dr
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Now each datum is described alongside the property that defines it. In doing this, we’ve
taken the semantic relationships that previously were inferred from the table and col-
umn and made them data in the table. This is the essence of semantic data modeling:
flexible schemas where the relationships are described by the data itself. In the
remainder of this book, you’ll see how you can move all of the semantics into the data.
We’ll show you how to represent data in this manner, and we’ll introduce tools espe-
cially designed for storing, visualizing, and querying semantic data.

Metadata Is Data
One of the challenges of using someone else’s relational data is understanding how the
various tables relate to one another. This information—the data about the data repre-
sentation—is often called metadata and represents knowledge about how the data can
be used. This knowledge is generally represented explicitly in the data definition
through foreign key relationships, or implicitly in the logic of the queries. Too fre-
quently, data is archived, published, or shared without this critical metadata. While
rediscovering these relationships can be an exciting exercise for the user, schemas need
not become very large before metadata recovery becomes nearly impossible.

In our earlier example, parameterizing the venue data made the model extremely flex-
ible. When we learn of a new characteristic for a venue, we simply need to add a new
row to the table, even if we’ve never seen that characteristic before. Parameterizing the
data also made it trivial to use. You need very little knowledge about the organization
of the data to make use of it. Once you know that rows sharing identical VenueIDs
relate to one another, you can learn everything there is to know about a venue by
selecting all rows with the same VenueID. From this perspective, we can think of the
parameterized venue data as “self-describing data.” The metadata of the relational
schema, describing which columns go together to describe a single entity, has become
part of the data itself.

Building for the Unexpected
By packing the data and metadata together in a single representation, we have not only
made the schema future-proof, we have also isolated our applications from “knowing”
too much about the form of the data. The only thing our application needs to know
about the data is that a venue will have an ID in the first column, the properties of the
venue appear in the second column, and the third column represents the value of each
property. When we add a totally new property to a venue, the application can either
choose to ignore the property or handle it in a standard manner.

Because our data is represented in a flexible model, it is easy for someone else to inte-
grate information about espresso machine locations, allowing our application to cover
not only restaurants and bars, but also coffee shops, book stores, and gas stations (at
least in the greater Seattle area). A well-designed application should be able to
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seamlessly integrate new semantic data, and semantic datasets should be able to work
with a wide variety of applications.

Many content and image creation tools now support XMP (Extensible Metadata Plat-
form) data for tracking information about the author and licensing of creative content.
The XMP standard, developed by Adobe Systems, provides a standard set of schemas
and allows users to extend the data model in exactly the way we extended the venue
data. By using a self-describing model, the tools used to inspect content for XMP data
need not change, even if the types of content change significantly in the future. Since
image creation tools are fundamentally for creative expression, it is essential that users
not be limited to a fixed set of descriptive fields.

“Perpetual Beta”
It’s clear that the Web changed the economics of application development. The web
facade greatly reduced coordination costs by cutting applications free from the com-
plexity of managing low-level network data messages. With a single application capable
of servicing all the users on the Internet, the software development deadlines imposed
by manufacturing lead time and channel distribution are quaint memories for most of
us. Applications are now free to improve on a continuous and independent basis.
Development cycles that update application code on a monthly, weekly, or even daily
basis are no longer considered unusual. The phrase “perpetual beta” reflects this sen-
timent that software is never “frozen” on the Web. As applications continually improve,
continuous release processes allow users to instantaneously benefit.

Compressed release cycles are a part of staying competitive at large portal sites. For
example, Yahoo! has a wide variety of media sites covering topics such as health, kids,
travel, and movies. Content is continually changing as news breaks, editorial processes
complete, and users annotate information. In an effort to reduce the time necessary to
produce specialized websites and enable new types of personalization and search,
Yahoo! has begun to add semantic metadata to their content using extensible schemas
not unlike the examples developed here. As data and metadata become one, new
applications can add their own annotations without modification to the underlying
schema. This freedom to extend the existing metadata enables constantly evolving fea-
tures without affecting legacy applications, and it allows one application to benefit from
the information provided by another.

This shift to continually improving and evolving applications has been accompanied
by a greater interest in what were previously considered “scripting” languages such as
Python, Perl, and Ruby. The ease of getting something up and running with minimal
upfront design and the ease of quick iterations to add new features gives these languages
an advantage over heavier static languages that were designed for more traditional
approaches to software engineering. However, most frameworks that use these lan-
guages still rely on relational databases for storage, and thus still require upfront data
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modeling and commitment to a schema that may not support the new data sources
that future application features require.

So, while perpetual beta is a great benefits to users, rapid development cycles can be a
challenge for data management. As new application features evolve, data schemas are
frequently forced to evolve as well. As we will see throughout the remainder of this
book, flexible semantic data structures and the application patterns that work with
them are well designed for life in a world of perpetual beta.
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CHAPTER 2

Expressing Meaning

In the previous chapter we showed you a simple yet flexible data structure for describing
restaurants, bars, and music venues. In this chapter we will develop some code to
efficiently handle these types of data structures. But before we start working on the
code, let’s see if we can make our data structure a bit more robust.

In its current form, our “fully parameterized venue” table allows us to represent arbi-
trary facts about food and music venues. But why limit the table to describing just these
kinds of items? There is nothing specific about the form of the table that restricts it to
food and music venues, and we should be able to represent facts about other entities
in this same three-column format.

In fact, this three-column format is known as a triple, and it forms the fundamental
building block of semantic representations. Each triple is composed of a subject, a
predicate, and an object. You can think of triples as representing simple linguistic
statements, with each element corresponding to a piece of grammar that would be used
to diagram a short sentence (see Figure 2-1).

Figure 2-1. Sentence diagram showing a subject-predicate-object relationship

Generally, the subject in a triple corresponds to an entity—a “thing” for which we have
a conceptual class. People, places, and other concrete objects are entities, as are less
concrete things like periods of time and ideas. Predicates are a property of the entity to
which they are attached. A person’s name or birth date or a business’s stock symbol or
mailing address are all examples of predicates. Objects fall into two classes: entities
that can be the subject in other triples, and literal values such as strings or numbers.

Multiple triples can be tied together by using the same subjects and objects in different
triples, and as we assemble these chains of relationships, they form a directed graph. 
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Directed graphs are well-known data structures in computer science and mathematics,
and we’ll be using them to represent our data.

Let’s apply our graph model to our venue data by relaxing the meaning of the first
column and asserting that IDs can represent any entity. We can then add neighborhood
information to the same table as our restaurant data (see Table 2-1).

Table 2-1. Extending the Venue table to include neighborhoods

Subject Predicate Object

S1 Cuisine “Deli”

S1 Price “$”

S1 Name “Deli Llama”

S1 Address “Peachtree Rd”

S2 Cuisine “Chinese”

S2 Price “$$$”

S2 Specialty Cocktail “Scorpion Bowl”

S2 DJ? “No”

S2 Name “Peking Inn”

S2 Address “Lake St”

S3 Live Music? “Yes”

S3 Music Genre “Jazz”

S3 Name “Thai Tanic”

S3 Address “Branch Dr”

S4 Name “North Beach”

S4 Contained-by “San Francisco”

S5 Name “SOMA”

S5 Contained-by “San Francisco”

S6 Name “Gourmet Ghetto”

S6 Contained-by “Berkeley”

Now we have venues and neighborhoods represented using the same model, but noth-
ing connects them. Since objects in one triple can be subjects in another triple, we can
add assertions that specify which neighborhood each venue is in (see Table 2-2).

Table 2-2. The triples that connect venues to neighborhoods

Subject Predicate Object

S1 Has Location S4

S2 Has Location S6

S3 Has Location S5
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Figure 2-2 is a diagram of some of our triples structured as a graph, with subjects and
objects as nodes and predicates as directed arcs.

Figure 2-2. A graph of triples showing information about a restaurant

Now, by following the chain of assertions, we can determine that it is possible to eat
cheaply in San Francisco. You just need to know where to look.

An Example: Movie Data
We can use this triple model to build a simple representation of a movie. Let’s start by
representing the title of the movie Blade Runner with the triple (blade_runner name
"Blade Runner"). You can think of this triple as an arc representing the predicate called
name, connecting the subject blade_runner to an object, in this case a string, representing
the value “Blade Runner” (see Figure 2-3).

Figure 2-3. A triple describing the title of the movie Blade Runner
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Now let’s add the release date of the film. This can be done with another triple
(blade_runner release_date "June 25, 1982"). We use the same ID blade_runner, which
indicates that we’re referring to the same subject when making these statements. It is
by using the same IDs in subjects and objects that a graph is built—otherwise, we would
have a bunch of disconnected facts and no way of knowing that they concern the same
entities.

Next, we want to assert that Ridley Scott directed the movie. The simplest way to do
this would be to add the triple (blade_runner directed_by "Ridley Scott"). There is a
problem with this approach, though—we haven’t assigned Ridley Scott an ID, so he
can’t be the source of new assertions, and we can’t connect him to other movies he has
directed. Additionally, if there happen to be other people named “Ridley Scott”, we
won’t be able to distinguish them by name alone.

Ridley Scott is a person and a director, among other things, and that definitely qualifies
as an entity. If we give him the ID ridley_scott, we can assert some facts about him:
(ridley_scott name "Ridley Scott"), and (blade_runner directed_by ridley_scott).
Notice that we reused the name property from earlier. Both entities, “Blade Runner”
and “Ridley Scott”, have names, so it makes sense to reuse the name property as long as
it is consistent with other uses. Notice also that we asserted a triple that connected two
entities, instead of just recording a literal value. See Figure 2-4.

Figure 2-4. A graph describing information about the movie Blade Runner
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Building a Simple Triplestore
In this section we will build a simple, cross-indexed triplestore. Since there are many
excellent semantic toolkits available (which we will explore in more detail in later
chapters), there is really no need to write a triplestore yourself. But by working through
the scaled-down code in this section, you will gain a better understanding of how these
systems work.

Our system will use a common triplestore design: cross-indexing the subject, predicate,
and object in three different permutations so that all triple queries can be answered
through lookups. All the code in this section is available to download at http://semprog
.com/psw/chapter2/simpletriple.py. You can either download the code and just read the
section to understand what it’s doing, or you can work through the tutorial to create
the same file.

The examples in this section and throughout the book are in Python. We chose to use
Python because it’s a very simple language to read and understand, it’s concise enough
to fit easily into short code blocks, and it has a number of useful toolkits for semantic
web programming. The code itself is fairly simple, so programmers of other languages
should be able to translate the examples into the language of their choice.

Indexes
To begin with, create a file called simplegraph.py. The first thing we’ll do is create a
class that will be our triplestore and add an initialization method that creates the three
indexes:

class SimpleGraph:
    def __init__(self):
        self._spo = {}
        self._pos = {}
        self._osp = {} 

Each of the three indexes holds a different permutation of each triple that is stored in
the graph. The name of the index indicates the ordering of the terms in the index (i.e.,
the pos index stores the predicate, then the object, and then the subject, in that order).
The index is structured using a dictionary containing dictionaries that in turn contain
sets, with the first dictionary keyed off of the first term, the second dictionary keyed
off of the second term, and the set containing the third terms for the index. For example,
the pos index could be instantiated with a new triple like so:

self._pos = {predicate:{object:set([subject])}}

A query for all triples with a specific predicate and object could be answered like so:

for subject in self._pos[predicate][object]: yield (subject, predicate, object)

Each triple is represented in each index using a different permutation, and this allows
any query across the triples to be answered simply by iterating over a single index.
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The add and remove Methods
The add method permutes the subject, predicate, and object to match the ordering of
each index:

    def add(self, (sub, pred, obj)):
        self._addToIndex(self._spo, sub, pred, obj)
        self._addToIndex(self._pos, pred, obj, sub)
        self._addToIndex(self._osp, obj, sub, pred)

The _addToIndex method adds the terms to the index, creating a dictionary and set if
the terms are not already in the index:

    def _addToIndex(self, index, a, b, c):
        if a not in index: index[a] = {b:set([c])}
        else:
            if b not in index[a]: index[a][b] = set([c])
            else: index[a][b].add(c)     

The remove method finds all triples that match a pattern, permutes them, and removes
them from each index:

    def remove(self, (sub, pred, obj)):
        triples = list(self.triples((sub, pred, obj)))
        for (delSub, delPred, delObj) in triples:
            self._removeFromIndex(self._spo, delSub, delPred, delObj)
            self._removeFromIndex(self._pos, delPred, delObj, delSub)
            self._removeFromIndex(self._osp, delObj, delSub, delPred)

The _removeFromIndex walks down the index, cleaning up empty intermediate diction-
aries and sets while removing the terms of the triple:

    def _removeFromIndex(self, index, a, b, c):
        try:
            bs = index[a]
            cset = bs[b]
            cset.remove(c)
            if len(cset) == 0: del bs[b]
            if len(bs) == 0: del index[a]
        # KeyErrors occur if a term was missing, which means that it wasn't a
        # valid delete:
        except KeyError:
            pass        

Finally, we’ll add methods for loading and saving the triples in the graph to comma-
separated files. Make sure to import the csv module at the top of your file:

    def load(self, filename):
        f = open(filename, "rb")
        reader = csv.reader(f)
        for sub, pred, obj in reader:
            sub = unicode(sub, "UTF-8")
            pred = unicode(pred, "UTF-8")
            obj = unicode(obj, "UTF-8")
            self.add((sub, pred, obj))
        f.close()

24 | Chapter 2: Expressing Meaning

Download at Boykma.Com



     def save(self, filename):
        f = open(filename, "wb")
        writer = csv.writer(f)
        for sub, pred, obj in self.triples((None, None, None)):
            writer.writerow([sub.encode("UTF-8"), pred.encode("UTF-8"), \
                obj.encode("UTF-8")])
        f.close()

Querying
The basic query method takes a (subject, predicate, object) pattern and returns all
triples that match the pattern. Terms in the triple that are set to None are treated as
wildcards. The triples method determines which index to use based on which terms
of the triple are wildcarded, and then iterates over the appropriate index, yielding triples
that match the pattern:

    def triples(self, (sub, pred, obj)):
        # check which terms are present in order to use the correct index:
        try:
            if sub != None: 
                if pred != None:
                    # sub pred obj
                    if obj != None:
                        if obj in self._spo[sub][pred]: 
                            yield (sub, pred, obj)
                    # sub pred None
                    else:
                        for retObj in self._spo[sub][pred]: 
                             yield (sub, pred, retObj)
                else:
                    # sub None obj
                    if obj != None:
                        for retPred in self._osp[obj][sub]: 
                             yield (sub, retPred, obj)
                    # sub None None
                    else:
                        for retPred, objSet in self._spo[sub].items():
                            for retObj in objSet:
                                yield (sub, retPred, retObj)
            else:
                if pred != None:
                    # None pred obj
                    if obj != None:
                        for retSub in self._pos[pred][obj]:
                            yield (retSub, pred, obj)
                    # None pred None
                    else:
                        for retObj, subSet in self._pos[pred].items():
                            for retSub in subSet:
                                yield (retSub, pred, retObj)
                else:
                    # None None obj
                    if obj != None:
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                        for retSub, predSet in self._osp[obj].items():
                            for retPred in predSet:
                                yield (retSub, retPred, obj)
                    # None None None
                    else:
                        for retSub, predSet in self._spo.items():
                            for retPred, objSet in predSet.items():
                                for retObj in objSet:
                                    yield (retSub, retPred, retObj)
        # KeyErrors occur if a query term wasn't in the index, 
        # so we yield nothing:
        except KeyError:
            pass        

Now, we’ll add a convenience method for querying a single value of a single triple:

    def value(self, sub=None, pred=None, obj=None):
         for retSub, retPred, retObj in self.triples((sub, pred, obj)):
             if sub is None: return retSub
             if pred is None: return retPred
             if obj is None: return retObj
             break
         return None

That’s all you need for a basic in-memory triplestore. Although you’ll see more
sophisticated implementations throughout this book, this code is sufficient for storing
and querying all kinds of semantic information. Because of the indexing, the perform-
ance will be perfectly acceptable for tens of thousands of triples.

Launch a Python prompt to try it out:

>>> from simplegraph import SimpleGraph
>>> movie_graph=SimpleGraph()
>>> movie_graph.add(('blade_runner','name','Blade Runner'))
>>> movie_graph.add(('blade_runner','directed_by','ridley_scott'))
>>> movie_graph.add(('ridley_scott','name','Ridley Scott'))
>>> list(movie_graph.triples(('blade_runner','directed_by',None)))
[('blade_runner', 'directed_by', 'ridley_scott')]
>>> list(movie_graph.triples((None,'name',None)))
[('ridley_scott', 'name', 'Ridley Scott'), ('blade_runner', 'name', 'Blade Runner')]
>>> movie_graph.value('blade_runner','directed_by',None)
ridley_scott

Merging Graphs
One of the marvelous properties of using graphs to model information is that if you
have two separate graphs with a consistent system of identifiers for subjects and objects,
you can merge the two graphs with no effort. This is because nodes and relationships
in graphs are first-class entities, and each triple can stand on its own as a piece of
meaningful data. Additionally, if a triple is in both graphs, the two triples merge
together transparently, because they are identical. Figures 2-5 and 2-6 illustrate the ease
of merging arbitrary datasets.
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Figure 2-5. Two separate graphs that share some identifiers

Figure 2-6. The merged graph that is the union of triples
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In the case of our simple graph, this example will merge two graphs into a single third
graph:

>>> graph1 = SimpleGraph()
>>> graph2 = SimpleGraph()
... load data into the graphs ...
>>> mergegraph = SimpleGraph()
>>> for sub, pred, obj in graph1: 
...     mergegraph.triples((None, None, None)).add((sub, pred, obj))
>>> for sub, pred, obj in graph2: 
...     mergegraph.triples((None, None, None)).add((sub, pred, obj))

Adding and Querying Movie Data
Now we’re going to load a large set of movies, actors, and directors. The movies.csv file
available at http://semprog.com/psw/chapter2/movies.csv contains over 20,000 movies
and is taken from Freebase.com. The predicates that we’ll be using are name,
directed_by for directors, and starring for actors. The IDs for all of the entities are the
internal IDs used at Freebase.com. Here’s how we load it into a graph:

>>> import simplegraph
>>> graph = simplegraph.SimpleGraph()
>>> graph.load("movies.csv")

Next, we’ll find the names of all the actors in the movie Blade Runner. We do this by
first finding the ID for the movie named “Blade Runner”, then finding the IDs of all the
actors in the movie, and finally looking up the names of those actors:

>>> bladerunnerId = graph.value(None, "name", "Blade Runner")
>>> print bladerunnerId
/en/blade_runner
>>> bladerunnerActorIds = [actorId for _, _, actorId in \
... graph.triples((bladerunnerId, "starring", None))]
>>> print bladerunnerActorIds
[u'/en/edward_james_olmos', u'/en/william_sanderson', u'/en/joanna_cassidy', 
u'/en/harrison_ford', u'/en/rutger_hauer', u'/en/daryl_hannah', ...
>>> [graph.value(actorId, "name", None) for actorId in bladerunnerActorIds]
[u'Edward James Olmos',u'William Sanderson', u'Joanna Cassidy', u'Harrison Ford', 
u'Rutger Hauer', u'Daryl Hannah', ...

Next, we’ll explore what other movies Harrison Ford has been in besides Blade Runner:

>>> harrisonfordId = graph.value(None, "name", "Harrison Ford")
>>> [graph.value(movieId, "name", None) for movieId, _, _ in \
... graph.triples((None, "starring", harrisonfordId))]
[u'Star Wars Episode IV: A New Hope', u'American Graffiti', 
u'The Fugitive', u'The Conversation', u'Clear and Present Danger',...

Using Python set intersection, we can find all of the movies in which Harrison Ford has
acted that were directed by Steven Spielberg:

>>> spielbergId = graph.value(None, "name", "Steven Spielberg")
>>> spielbergMovieIds = set([movieId for movieId, _, _  in \
... graph.triples((None, "directed_by", spielbergId))])
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>>> harrisonfordId = graph.value(None, "name", "Harrison Ford")
>>> harrisonfordMovieIds = set([movieId for movieId, _, _  in \
... graph.triples((None, "starring", harrisonfordId))])
>>> [graph.value(movieId, "name", None) for movieId in \
... spielbergMovieIds.intersection(harrisonfordMovieIds)]
[u'Raiders of the Lost Ark', u'Indiana Jones and the Kingdom of the Crystal Skull',
 u'Indiana Jones and the Last Crusade', u'Indiana Jones and the Temple of Doom']

It’s a little tedious to write code just to do queries like that, so in the next chapter we’ll
show you how to build a much more sophisticated query language that can filter and
retrieve more complicated queries. In the meantime, let’s look at a few more graph
examples.

Other Examples
Now that you’ve learned how to represent data as a graph, and worked through an
example with movie data, we’ll look at some other types of data and see how they can
also be represented as graphs. This section aims to show that graph representations
can be used for a wide variety of purposes. We’ll specifically take you through examples
in which the different kinds of information could easily grow.

We’ll look at data about places, celebrities, and businesses. In each case, we’ll explore
ways to represent the data in a graph and provide some data for you to download. All
these triples were generated from Freebase.com.

Places
Places are particularly interesting because there is so much data about cities and coun-
tries available from various sources. Places also provide context for many things, such
as news stories or biographical information, so it’s easy to imagine wanting to link other
datasets into comprehensive information about locations. Places can be difficult to
model, however, in part because of the wide variety of types of data available, and also
because there’s no clear way to define them—a city’s name can refer to its metro area
or just to its limits, and concepts like counties, states, parishes, neighborhoods, and
provinces vary throughout the world.

Figure 2-7 shows a graph centered around “San Francisco”. You can see that San Fran-
cisco is in California, and California is in the United States. By structuring the places
as a graphical hierarchy we avoid the complications of defining a city as being in a state,
which is true in some places but not in others. We also have the option to add more
information, such as neighborhoods, to the hierarchy if it becomes available. The figure
shows various information about San Francisco through relationships to people and
numbers and also the city’s geolocation (longitude and latitude), which is important
for mapping applications and distance calculations.
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Figure 2-7. An example of location data expressed as a graph

You can download a file containing triples about places from http://semprog.com/psw/
chapter2/place_triples.txt. In a Python session, load it up and try some simple queries:

>>> from simplegraph import SimpleGraph
>>> placegraph=SimpleGraph()
>>> placegraph.loadfile("place_triples.txt")

This pattern returns everything we know about San Francisco:

>>> for t in placegraph.triples((None,"name","San Francisco")): 
...     print t
... 
(u'San_Francisco_California', 'name', 'San Francisco')
>>> for t in placegraph.triples(("San_Francisco_California",None,None)):
...     print t
... 
('San_Francisco_California', u'name', u'San Francisco')
('San_Francisco_California', u'inside', u'California')
('San_Francisco_California', u'longitude', u'-122.4183')
('San_Francisco_California', u'latitude', u'37.775')
('San_Francisco_California', u'mayor', u'Gavin Newsom')
('San_Francisco_California', u'population', u'744042')
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This pattern shows all the mayors in the graph:

>>> for t in placegraph.triples((None,'mayor',None)):
...     print t
... 
(u'Aliso_Viejo_California', 'mayor', u'Donald Garcia')
(u'San_Francisco_California', 'mayor', u'Gavin Newsom')
(u'Hillsdale_Michigan', 'mayor', u'Michael Sessions')
(u'San_Francisco_California', 'mayor', u'John Shelley')
(u'Alameda_California', 'mayor', u'Lena Tam')
(u'Stuttgart_Germany', 'mayor', u'Manfred Rommel')
(u'Athens_Greece', 'mayor', u'Dora Bakoyannis')
(u'Portsmouth_New_Hampshire', 'mayor', u'John Blalock')
(u'Cleveland_Ohio', 'mayor', u'Newton D. Baker')
(u'Anaheim_California', 'mayor', u'Curt Pringle')
(u'San_Jose_California', 'mayor', u'Norman Mineta')
(u'Chicago_Illinois', 'mayor', u'Richard M. Daley')

...

We can also try something a little bit more sophisticated by using a loop to get all the
cities in California and then getting their mayors:

>>> cal_cities=[p[0] for p in placegraph.triples((None,'inside','California'))]
>>> for city in cal_cities:
...     for t in placegraph.triples((city,'mayor',None)):
...        print t
... 
(u'Aliso_Viejo_California', 'mayor', u'William Phillips')
(u'Chula_Vista_California', 'mayor', u'Cheryl Cox')
(u'San_Jose_California', 'mayor', u'Norman Mineta')
(u'Fontana_California', 'mayor', u'Mark Nuaimi')
(u'Half_Moon_Bay_California', 'mayor', u'John Muller')
(u'Banning_California', 'mayor', u'Brenda Salas')
(u'Bakersfield_California', 'mayor', u'Harvey Hall')
(u'Adelanto_California', 'mayor', u'Charley B. Glasper')
(u'Fresno_California', 'mayor', u'Alan Autry')
(etc...)

This is a simple example of joining data in multiple steps. As mentioned previously,
the next chapter will show you how to build a simple graph-query language to do all
of this in one step.

Celebrities
Our next example is a fun one: celebrities. The wonderful thing about famous people
is that other people are always talking about what they’re doing, particularly when what
they’re doing is unexpected. For example, take a look at the graph around the ever-
controversial Britney Spears, shown in Figure 2-8.
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Figure 2-8. An example of celebrity data expressed as a graph

Even from this very small section of Ms. Spears’s life, it’s clear that there are lots of
different things and, more importantly, lots of different types of things we say about
celebrities. It’s almost comical to think that one could frontload the schema design of
everything that a famous musician or actress might do in the future that would be of
interest to people. This graph has already failed to include such things as favorite
nightclubs, estranged children, angry head-shavings, and cosmetic surgery
controversies.

We’ve created a sample file of triples about celebrities at http://semprog.com/psw/chap
ter2/celeb_triples.txt. Feel free to download this, load it into a graph, and try some fun
examples:

>>> from simplegraph import SimpleGraph
>>> cg=SimpleGraph()
>>> cg.load('celeb_triples.csv')
>>> jt_relations=[t[0] for t in cg.triples((None,'with','Justin Timberlake'))]
>>> jt_relations # Justin Timberlake's relationships
[u'rel373', u'rel372', u'rel371', u'rel323', u'rel16', u'rel15', 
 u'rel14', u'rel13', u'rel12', u'rel11']
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>>> for rel in jt_relations:
...     print [t[2] for t in cg.triples((rel,'with',None))]
... 
[u'Justin Timberlake', u'Jessica Biel']
[u'Justin Timberlake', u'Jenna Dewan']
[u'Justin Timberlake', u'Alyssa Milano']
[u'Justin Timberlake', u'Cameron Diaz']
[u'Justin Timberlake', u'Britney Spears']
[u'Justin Timberlake', u'Jessica Biel']
[u'Justin Timberlake', u'Jenna Dewan']
[u'Justin Timberlake', u'Alyssa Milano']
[u'Justin Timberlake', u'Cameron Diaz']
[u'Justin Timberlake', u'Britney Spears']
>>> bs_movies=[t[2] for t in cg.triples(('Britney Spears','starred_in',None))]
>>> bs_movies # Britney Spears' movies
[u'Longshot', u'Crossroads', u"Darrin's Dance Grooves", u'Austin Powers: Goldmember']
>> movie_stars=set()
>>> for t in cg.triples((None,'starred_in',None)):
...     movie_stars.add(t[0])
... 
>>> movie_stars # Anyone with a 'starred_in' assertion
set([u'Jenna Dewan', u'Cameron Diaz', u'Helena Bonham Carter', u'Stephan Jenkins', 
u'Pen\xe9lope Cruz', u'Julie Christie', u'Adam Duritz', u'Keira Knightley',
(etc...)

As an exercise, see if you can write Python code to answer some of these questions:

• Which celebrities have dated more than one movie star?

• Which musicians have spent time in rehab? (Use the person predicate from rehab
nodes.)

• Think of a new predicate to represent fans. Add a few assertions about stars of
whom you are a fan. Now find out who your favorite stars have dated.

Hopefully you’re starting to get a sense of not only how easy it is to add new assertion
types to a triplestore, but also how easy it is to try things with assertions created by
someone else. You can start asking questions about a dataset from a single file of triples.
The essence of semantic data is ease of extensibility and ease of sharing.

Business
Lest you think that semantic data modeling is all about movies, entertainment, and
celebrity rivalries, Figure 2-9 shows an example with a little more gravitas: data from
the business world. This graph shows several different types of relationships, such as
company locations, revenue, employees, directors, and political contributions.
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Figure 2-9. An example of business data expressed as a graph

Obviously, a lot of information that is particular to these businesses could be added to
this graph. The relationships shown here are actually quite generic and apply to most
companies, and since companies can do so many different things, it’s easy to imagine
more specific relationships that could be represented. We might, for example, want to
know what investments Berkshire Hathaway has made, or what software products
Microsoft has released. This just serves to highlight the importance of a flexible schema
when dealing with complex domains such as business.

Again, we’ve provided a file of triples for you to download, at http://semprog.com/psw/
chapter2/business_triples.csv. This is a big graph, with 36,000 assertions about 3,000
companies.

Here’s an example session:

>>> from simplegraph import SimpleGraph
>>> bg=SimpleGraph()
>>> bg.load('business_triples.csv')

>>> # Find all the investment banks
>>> ibanks=[t[0] for t in bg.triples((None,'industry','Investment Banking'))]
>>> ibanks
[u'COWN', u'GBL', u'CLMS', u'WDR', u'SCHW', u'LM', u'TWPG', u'PNSN', u'BSC', u'GS', 
 u'NITE', u'DHIL', u'JEF', u'BLK', u'TRAD', u'LEH', u'ITG', u'MKTX', u'LAB', u'MS', 
 u'MER', u'OXPS', u'SF']

>>> bank_contrib={}  # Contribution nodes from Investment banks
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>>> for b in ibanks:
...     bank_contrib[b]=[t[0] for t in bg.triples((None,'contributor',b))]

>>> # Contributions from investment banks to politicians
>>> for b,contribs in bank_contrib.items():
...     for contrib in contribs:
...             print [t[2] for t in bg.triples((contrib,None,None))]

[u'BSC', u'30700.0', u'Orrin Hatch']
[u'BSC', u'168335.0', u'Hillary Rodham Clinton']
[u'BSC', u'5600.0', u'Christopher Shays']
[u'BSC', u'5000.0', u'Barney Frank']
(etc...)

>>> sw=[t[0] for t in bg.triples((None,'industry','Computer software'))]
>>> sw
[u'GOOG', u'ADBE', u'IBM',   # Google, Adobe, IBM

>>> # Count locations
>>> locations={}
>>> for company in sw:
...     for t in bg.triples((company,'headquarters',None)):
...             locations[t[2]]=locations.setdefault(t[2],0)+1

>>> # Locations with 3 or more software companies
>>> [loc for loc,c in locations.items() if c>=3]
[u'Austin_Texas', u'San_Jose_California', u'Cupertino_California', 
u'Seattle_Washington']

Notice that we’ve used ticker symbols as IDs, since they are guaranteed to be unique
and short.

We hope this gives you a good idea of the many different types of data that can be
expressed in triples, the different things you might ask of the data, and how easy it is
to extend it. Now let’s move on to creating a better method of querying.
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CHAPTER 3

Using Semantic Data

So far, you’ve seen how using explicit semantics can make it easier to share your data
and extend your existing system as you get new data. In this chapter we’ll show that
semantics also makes it easier to develop reusable techniques for querying, exploring,
and using data. Capturing semantics in the data itself means that reconfiguring an
algorithm to work on a new dataset is often just a matter of changing a few keywords.

We’ll extend the simple triplestore we built in Chapter 2 to support constraint-based
querying, simple feed-forward reasoning, and graph searching. In addition, we’ll look
at integrating two graphs with different kinds of data but create separate visualizations
of the data using tools designed to work with semantic data.

A Simple Query Language
Up to this point, our query methods have looked for patterns within a single triple by
setting the subject, predicate, or object to a wildcard. This is useful, but by treating
each triple independently, we aren’t able to easily query across a graph of relationships.
It is these graph relationships, spanning multiple triples, that we are most interested in
working with.

For instance, in Chapter 2 when we wanted to discover which mayors served cities in
California, we were forced to run one query to find “cities” (subject) that were “inside”
(predicate) “California” (object) and then independently loop through all the cities
returned, searching for triples that matched the “city” (subject) and “mayor”
(predicate).

To simplify making queries like this, we will abstract this basic query process and
develop a simple language for expressing these types of graph relationships. This graph
pattern language will form the basis for building more sophisticated queries and
applications in later chapters.
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Variable Binding
Let’s consider a fragment of the graph represented by the places_triples used in the
section “Other Examples” on page 29. We can visualize this graph, representing three
cities and the predicates “inside” and “mayor”, as shown in Figure 3-1.

Figure 3-1. A graph of city mayors and locations

Consider the two statements about San Francisco: it is “inside” California, and Gavin
Newsom is the mayor. When we express this piece of the graph in triples, we use a
common subject identifier San_Francisco_California to indicate that the statements
describe a single entity:

("San_Francisco_California", "inside", "California")
("San_Francisco_California", "mayor", "Gavin Newsom")

The shared subject identifier San_Francisco_California indicates that the two state-
ments are about the same entity, the city of San Francisco. When an identifier is used
multiple times in a set of triples, it indicates that a node in the graph is shared by all
the assertions. And just as you are free to select any name for a variable in a program,
the choice of identifiers used in triples is arbitrary, too. As long as you are consistent
in your use of an identifier, the facts that you can learn from the assertions will be clear.
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For instance, we could have said Gavin Newsom is the mayor of a location within
California with the triples:

("foo", "inside", "California")
("foo", "mayor", "Gavin Newsom")

While San_Francisco_California is a useful moniker to help humans understand that
“San Francisco” is the location within California that has Newsom as a mayor, the
relationships described in the triples using San_Francisco_California and foo are
identical.

It is important not to think of the identifier as the “name” of an entity.
Identifiers are simply arbitrary symbols that indicate multiple assertions
are related. As in the original places_triples dataset in Chapter 2, if we
wanted to name the entity where Newsom is mayor, we would need to
make the name relationship explicit with another triple:

("foo", "name", "San Francisco")

With an understanding of how shared identifiers are used to indicate shared nodes in
the graph, we can return to our question of which mayors serve in California. As before,
we start by asking, “Which nodes participate in an assertion with the predicate of
‘inside’ and object of ‘California’?” Using our current query method, we would write
this constraint as this triple query:

(None, "inside", "California")

and our query method would return the set of triples that matched the pattern.

Instead of using a wildcard, let’s introduce a variable named ?city to collect the
identifiers for the nodes in the graph that satisfy our constraints. For the graph
fragment pictured in Figure 3-1 and the triple query pattern ("?city", "inside",
"California"), there are two triples that satisfy the constraints, which gives us two
possible values for the variable ?city: the identifiers San_Francisco_California and
San_Jose_California.

We can express these results as a list of dictionaries mapping the variable name to each
matching identifier. We refer to these various possible mappings as “bindings” of the
variable ?city to different values. In our example, the results would be expressed as:

[{"?city": "San_Francisco_California"}, {"?city": "San_Jose_California"}]

We now have a way to assign results from a triple query to a variable. We can use this
to combine multiple triple queries and take the intersection of the individual result sets.
For instance, this query specifies the intersection of two triple queries in order to find
all cities in California that have a mayor named Norman Mineta:

("?city", "inside", "California")
("?city", "mayor", "Norman Mineta")
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The result [{"?city": "San_Jose_California"}] is the solution to this graph query
because it is the only value for the variable ?city that is in all of the individual triple
query results. We call the individual triple queries in the graph query “constraints”
because each triple query constrains and limits the possible results for the whole graph
query.

We can also use variables to ask for more results. By adding an additional variable, we
can construct a graph query that tells us which mayors serve cities within California:

("?city", "inside", "California")
("?city", "mayor", "?name_of_mayor")

There are two solutions to this query. In the first solution, the variable ?city is bound
to the identifier San_Jose_California, which causes the variable ?name_of_mayor to be
bound to the identifier “Norman Mineta”. In the second solution, ?city will be bound
to San_Francisco_California, resulting in the variable ?name_of_mayor being bound to
“Gavin Newsom”. We can write this solution set as:

[{"?city": "San_Francisco_California", "?name_of_mayor": "Gavin Newsom"}, 
{"?city": "San_Jose_California", "?name_of_mayor": "Norman Mineta"}]

It is important to note that all variables in a solution are bound simultaneously—each
dictionary represents an alternative and valid set of bindings given the constraints in
the graph query.

Implementing a Query Language
In this section, we’ll show you how to add variable binding to your existing triplestore. 
This will allow you to ask the complex questions in the previous chapter with a single
method call, instead of doing separate loops and lookups for each step. For example,
the following query returns all of the investment banks in New York that have given
money to Utah Senator Orrin Hatch:

>>> bg.query([('?company','headquarters','New_York_NY'),
              ('?company','industry','Investment Banking'),
              ('?company','contributor','?contribution'),
              ('?contribution','recipient','Orrin Hatch'),
              ('?contribution','amount','?dollars')])

The variables are preceded with a question mark, and everything else is considered a
constant. This call to the query method tries to find possible values for company,
contribution, and dollars that fulfill the following criteria:

1. company is headquartered in New York

2. company is in the industry Investment Banking

3. company made a contribution called contribution

4. contribution had a recipient called Orrin Hatch

5. contribution had an amount equal to dollars
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From the session at the end of Chapter 2, we know that one possible answer is:

{'?company':'BSC',
 '?contribution':'contXXX',
 '?dollars':'30700'}

If BSC has made multiple contributions to Orrin Hatch, we’ll get a separate solution
for each contribution.

Before we get to the implementation, just to make sure you’re clear, here’s another
example:

>>> cg.query([('?rel1','with','?person'),
              ('?rel1','with','Britney Spears'),
              ('?rel1','end','?year1'),
              ('?rel2','with','?person'),
              ('?rel2','start','?year1')])

This asks, “Which person started a new relationship in the same year that their rela-
tionship with Britney Spears ended?” The question is a little convoluted, but hopefully
it shows the power of querying with variable binding. In this case, we’re looking for
sets that fulfill the following criteria:

1. rel1 (a relationship) involved person

2. rel1 also involved Britney Spears

3. rel1 ended in year1

4. rel2 involved person

5. rel2 started in year1

Since there’s nothing saying that person can’t be Britney Spears, it’s possible that she
could be one of the answers, if she started a new relationship the same year she ended
one. As we look at more sophisticated querying languages, we’ll see ways to impose
negative constraints.

The implementation of query is a very simple method for variable binding. It’s not super
efficient and doesn’t do any query optimization, but it will work well on the sets we’ve
been working with and should help you understand how variable binding works. You
can add the following code to your existing simplegraph class, or you can download
http://semprog.com/psw/chapter3/simplegraph.py:

    def query(self,clauses):
        bindings = None       
        for clause in clauses:
            bpos = {}
            qc = []
            for pos, x in enumerate(clause):
                if x.startswith('?'):
                    qc.append(None)
                    bpos[x] = pos
                else:
                    qc.append(x)
            rows = list(self.triples((qc[0], qc[1], qc[2])))
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            if bindings == None:
                # This is the first pass, everything matches
                bindings = []
                for row in rows:   
                    binding = {}
                    for var, pos in bpos.items():
                        binding[var] = row[pos]
                    bindings.append(binding)
            else:
                # In subsequent passes, eliminate bindings that don't work
                newb = []
                for binding in bindings:
                    for row in rows:
                        validmatch = True
                        tempbinding = binding.copy()
                        for var, pos in bpos.items():
                            if var in tempbinding:
                                if tempbinding[var] != row[pos]:
                                    validmatch = False
                            else:
                                tempbinding[var] = row[pos]
                        if validmatch: newb.append(tempbinding)
                bindings = newb    
        return bindings

This method loops over each clause, keeping track of the positions of the variables (any
string that starts with ?). It replaces all the variables with None so that it can use the
triples method already defined in simplegraph. It then gets all the rows matching the
pattern with the variables removed.

For every row in the set, it looks at the positions of the variables in the clause and tries
to fit the values to one of the existing bindings. The first time through there are no
existing bindings, so every row that comes back becomes a potential binding. After the
first time, each row is compared to the existing bindings—if it matches, more variables
are added and the binding is added to the current set. If there are no rows that match
an existing binding, that binding is removed.

Try using this new query method in a Python session for the two aforementioned
queries:

>>> from simplegraph import SimpleGraph()
>>> bg = SimpleGraph()
>>> bg.load('business_triples.csv')
>>> bg.query([('?company','headquarters','New_York_New_York'),
              ('?company','industry','Investment Banking'),
              ('?cont','contributor','?company'),
              ('?cont','recipient','Orrin Hatch'),
              ('?cont','amount','?dollars')])
[{'company': u'BSC', 'cont': u'contrib285', 'dollars': u'30700.0'}]
>>> cg = SimpleGraph()
>>> cg.load('celeb_triples.csv')
>>> cg.query([('?rel1','with','?person'),
              ('?rel1','with','Britney Spears'),
              ('?rel1','end','?year1'),
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              ('?rel2','with','?person'),
              ('?rel2','start','?year1')])
[{'person': u'Justin Timberlake', 'rel1': u'rel16', 'year1': u'2002', 
    'rel2': u'rel372'} ...

Now see if you can formulate some queries of your own on the movie graph. For
example, which actors have starred in movies directed by Ridley Scott as well as movies
directed by George Lucas?

Feed-Forward Inference
Inference is the process of deriving new information from information you already have.
This can be used in a number of different ways. Here are a few examples of types of
inference:

Simple and deterministic
If I know a rock weighs 1 kg, I can infer that the same rock weighs 2.2 lbs.

Rule-based
If I know a person is under 16 and in California, I can infer that they are not allowed
to drive.

Classifications
If I know a company is in San Francisco or Seattle, I can classify it as a “west coast
company.”

Judgments
If I know a person’s height is 6 feet or more, I refer to them as tall.

Online services
If I know a restaurant’s address, I can use a geocoder to find its coordinates on a
map.

Obviously, the definition of what counts as “information” and which rules are appro-
priate will vary depending on the context, but the idea is that by using rules along with
some knowledge and outside services, we can generate new assertions from our existing
set of assertions.

The last example is particularly interesting in the context of web development. The
Web has given us countless online services that can be queried programmatically. This
means it is possible to take the assertions in a triplestore, formulate a request to a web
service, and use the results from the query to create new assertions. In this section, we’ll
show examples of basic rule-based inference and of using online services to infer new
triples from existing ones.

Inferring New Triples
The basic pattern of inference is simply to query for information (in the form of bind-
ings) relevant to a rule, then apply a transformation that turns these bindings into a
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new set of triples that get added back to the triplestore. We’re going to create a basic
class that defines inference rules, but first we’ll add a new method for applying rules to
the SimpleGraph class. If you downloaded http://semprog.com/psw/chapter3/simple
graph.py, you should already have this method. If not, add it to your class:

    def applyinference(self,rule):
        queries = rule.getqueries()
        bindings=[]
        for query in queries:
            bindings += self.query(query)
        for b in bindings:
            new_triples = rule.maketriples(b)
            for triple in new_triples:
                self.add(triple)

This method takes a rule (usually an instance of  InferenceRule) and runs its query to
get a set of bindings. It then calls rule.maketriples on each set of bindings, and adds
the returned triples to the store.

The InferenceRule class itself doesn’t do much, but it serves as a base from which other
rules can inherit. Child classes will override the getquery method and define a new
method called _maketriples, which will take each binding as a parameter. You can
download http://semprog.com/psw/chapter3/inferencerule.py, which contains the class
definition of InferenceRule and the rest of the code from this section. If you prefer, you
can create a new file called inferencerule.py and add the following code:

class InferenceRule:
    def getqueries(self):
        return []
    
    def maketriples(self,binding):
        return self._maketriples(**binding)

Now we are ready to define a new rule. Our first rule will identify companies
headquartered in cities on the west coast of the United States and identify them as such:

class WestCoastRule(InferenceRule):
    def getqueries(self):
        sfoquery = [('?company', 'headquarters', 'San_Francisco_California')]
        seaquery = [('?company', 'headquarters', 'Seattle_Washington')]
        laxquery = [('?company', 'headquarters', 'Los_Angelese_California')]
        porquery = [('?company', 'headquarters', 'Portland_Oregon')]
        return [sfoquery, seaquery, laxquery, porquery]

    def _maketriples(self, company):
        return [(company, 'on_coast', 'west_coast')]

The rule class lets you define several queries: in this case, there’s a separate query for
each of the major west coast cities. The variables used in the queries themselves (in this
case, just company) become the parameters for the call to _maketriples. This rule asserts
that all the companies found by the first set of queries are on the west coast.
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You can try this in a session:

>>> wcr = WestCoastRule()
>>> bg.applyinference(wcr)
>>> list(bg.triples((None, 'on_coast', None)))
[(u'PCL', 'on_coast', 'west_coast'), (u'PCP', 'on_coast', 'west_coast') ...

Although we have four different queries for our west coast rule, each of them has only
one clause, which makes the rules themselves very simple. Here’s a rule with a more
sophisticated query that can be applied to the celebrities graph:

class EnemyRule(InferenceRule):
    def getqueries(self):
        partner_enemy = [('?person', 'enemy', '?enemy'),
                         ('?rel', 'with', '?person'),
                         ('?rel', 'with', '?partner)]
        return [partner_enemy]

    def _maketriples(self, person, enemy, rel, partner):
        return (partner, 'enemy', enemy)

Just from looking at the code, can you figure out what this rule does? It asserts that if
a person has a relationship partner and also an enemy, then their partner has the same
enemy. That may be a little presumptuous, but nonetheless it demonstrates a simple
logical rule that you can make with this pattern. Again, try it in a session:

>>> from simplegraphq import *
>>> cg = SimpleGraph()
>>> cg.load('celeb_triples.csv')
>>> er = EnemyRule()
>>> list(cg.triples((None, 'enemy', None)))
[(u'Jennifer Aniston', 'enemy', u'Angelina Jolie')...
>>> cg.applyinference(er)
>>> list(cg.triples((None, 'enemy', None)))
[(u'Jennifer Aniston', 'enemy', u'Angelina Jolie'), (u'Vince Vaughn', 'enemy', \
    u'Angelina Jolie')...

These queries are all a little self-directed, since they operate directly on the data and
have limited utility. We’ll now see how we can use this reasoning framework to add
more information to the triplestore by retrieving it from outside sources.

Geocoding
Geocoding is the process of taking an address and getting the geocoordinates (the lon-
gitude and latitude) of that address. When you use a service that shows the location of
an address on a map, the address is always geocoded first. Besides displaying on a map,
geocoding is useful for figuring out the distance between two places and determining
automatically if an address is inside or outside particular boundaries. In this section,
we’ll show you how to use an external geocoder to infer triples from addresses of
businesses.
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Using a free online geocoder

There are a number of geocoders that are accessible through an API, many of which
are free for limited use. We’re going to use the site http://geocoder.us/, which provides
free geocoding for noncommercial use and very cheap access for commercial
use for addresses within the United States. The site is based on a Perl script called
Geo::Coder::US, which can be downloaded from http://search.cpan.org/~sderle/Geo
-Coder-US/ if you’re interested in hosting your own geocoding server.

There are several other commercial APIs, such as Yahoo!’s, that offer free geocoding
with various limitations and can be used to geocode addresses in many different coun-
tries. We’ve provided alternative implementations of the geocoding rule on our site
http://semprog.com/.

The free service of geocoder.us is accessed using a REST API through a URL that looks
like this:

http://rpc.geocoder.us/service/csv?address=1600+Pennsylvania+Avenue,+Washing
ton+DC

If you go to this URL in your browser, you should get a single line response:

38.898748,-77.037684,1600 Pennsylvania Ave NW,Washington,DC,20502

This is a comma-delimited list of values showing the latitude, longitude, street address,
city, state, and ZIP code. Notice how, in addition to providing coordinates, the geo-
coder has also changed the address to a more official “Pennsylvania Ave NW” so that
you can easily compare addresses that were written in different ways. Try a few other
addresses and see how the results change.

Adding a geocoding rule

To create a geocoding rule, just make a simple class that extends InferenceRule. The
query for this rule finds all triples that have “address” as their predicate; then for each
address it contacts the geocoder and tries to extract the latitude and longitude:

from urllib import urlopen, quote_plus

class GeocodeRule(InferenceRule):
    def getquery(self):
        return [('?place', 'address', '?address')]
    
    def _maketriples(self, place, address):
        url = 'http://rpc.geocoder.us/service/csv?address=%s' % quote_plus(address)
        con = urlopen(url)
        data = con.read()
        con.close()        
        parts = data.split(',')
        if len(parts) >= 5:
            return [(place, 'longitude', parts[0]),
                    (place, 'latitude', parts[1])]
        else:
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            # Couldn't geocode this address
            return []

You can then run the geocoder by creating a new graph and putting an address in it:

>>> from simplegraph import *
>>> from inferencerule import *
>>> geograph = SimpleGraph()
>>> georule = GeocodeRule()
>>> geograph.add(('White House', 'address', '1600 Pennsylvania Ave, Washington, DC'))
>>> list(geograph.triples((None, None, None))
[('White House', 'address', '1600 Pennsylvania Ave, Washington, DC')]
>>> geograph.applyinference(georule)
>>> list(geograph.triples((None, None, None))
[('White House', 'latitude', '-77.037684'),
 ('White House', 'longitude', '38.898748'),
 ('White House', 'address', '1600 Pennsylvania Ave, Washington, DC')]

We’ve provided a file containing a couple of restaurants in Washington, DC, at http://
semprog.com/psw/chapter3/DC_addresses.csv. Try downloading the data and running
it through the geocoding rule. This may take a minute or two, as access to the geocoder
is sometimes throttled. If you’re worried it’s taking too long, you can add print state-
ments to the geocode rule to monitor the progress.

Chains of Rules
The fact that these inferences create new assertions in the triplestore is incredibly useful
to us. It means that we can write inference rules that operate on the results of other
rules without explicitly coordinating all of the rules together. This allows the creation
of completely decoupled, modular systems that are very robust to change and failure.

To understand how this works, take a look at CloseToRule. This takes a place name
and a graph in its constructor. It queries for every geocoded item in the graph, calculates
how far away they are, and then asserts close_to for all of those places that are close by:

class CloseToRule(InferenceRule):
    
    def __init__(self, place, graph):
        self.place = place
        laq = list(graph.triples((place, 'latitude', None)))
        loq = list(graph.triples((place, 'longitude', None)))
        
        if len(laq) == 0 or len(loq) == 0:
            raise "Exception","%s is not geocoded in the graph" % place
        
        self.lat = float(laq[0][2])
        self.long = float(loq[0][2])
    
    def getqueries(self):
        geoq=[('?place', 'latitude', '?lat'), ('?place', 'longitude', '?long')]
        return [geoq]
    
    def _maketriples(self, place, lat, long):
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        # Formula for distance in miles from geocoordinates
        distance=((69.1*(self.lat - float(lat)))**2 + \
            (53*(self.lat - float(lat)))**2)**.5
        
        # Are they less than a mile apart
        if distance < 1:
            return [(self.place, 'close_to', place)]
        else:
            return [(self.place, 'far_from', place)]

Now you can use these two rules together to first geocode the addresses, then create
assertions about which places are close to the White House:

>>> from simplegraph import *
>>> from inferencerule import *
>>> pg = SimpleGraph()
>>> pg.load('DC_addresses.csv')
>>> georule = GeocodeRule()
>>> pg.applyinference(georule)
>>> whrule = CloseToRule('White House',pg)
>>> pg.applyinference(whrule)
>>> list(pg.triples((None, 'close_to', None)))
[('White House', 'close_to', u'White House'), 
 ('White House', 'close_to', u'Pot Belly'),
 ('White House', 'close_to', u'Equinox')]

Now we’ve chained together two rules. Keep this session open while we take a look at
another rule, which identifies restaurants that are likely to be touristy. In the
DC_addresses file, there are assertions about what kind of place each venue is (“tourist
attraction” or “restaurant”) and also information about prices (“cheap” or “expen-
sive”). The TouristyRule combines all this information along with the close_to asser-
tions to determine which restaurants are touristy:

class TouristyRule(InferenceRule):
    def getqueries(self):
        tr = [('?ta', 'is_a', 'Tourist Attraction'),
              ('?ta', 'close_to', '?restaurant'),
              ('?restaurant', 'is_a', 'restaurant'),
              ('?restaurant', 'cost', 'cheap')]
            
    def _maketriples(self, ta, restaurant):
        return [(restaurant, 'is_a', 'touristy restaurant')]

That is, if a restaurant is cheap and close to a tourist attraction, then it’s probably a
pretty touristy restaurant:

>>> tr = TouristyRule()
>>> pg.applyinference(tr)
>>> list(pg.triples((None, 'is_a', 'touristy restaurant')))
[(u'Pot Belly', 'is_a', 'touristy restaurant')]

So we’ve gone from a bunch of addresses and restaurant prices to predictions about
restaurants where you might find a lot of tourists. You can think of this as a group of
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dependent functions, similar to Figure 3-2, which represents the way we normally think
about data processing.

Figure 3-2. A “chain view” of the rules

What’s important to realize here is that the rules exist totally independently. Although
we ran the three rules in sequence, they weren’t aware of each other—they just looked
to see if there were any triples that they knew how to deal with and then created new
ones based on those. These rules can be run continuously—even from different ma-
chines that have access to the same triplestore—and still work properly, and new rules
can be added at any time. To help understand what this implies, consider a few
examples:

1. Geographical oddities may have a latitude and longitude but no address. They can
be put right into the triplestore, and CloseToRule will find them without them ever
being noticed by GeocodeRule.

2. We may invent new rules that add addresses to the database, which will run
through the whole chain.

3. We may initially know about a restaurant’s existence but not know its cost. In this
case, GeocodeRule can geocode it, CloseToRule can assert that it is close to things,
but TouristyRule won’t be able to do anything with it. However, if we later learn
the cost, TouristyRule can be activated without activating the other rules.

4. We may know that some place is close to another place but not know its exact
location. Perhaps someone told us that they walked from the White House to a
restaurant. This information can be used by TouristyRule without requiring the
other rules to be activated.

So a better way to think about this is Figure 3-3.

The rules all share an information store and look for information they can use to gen-
erate new information. This is sometimes referred to as a multi-agent blackboard. It’s
a different way of thinking about programming that sacrifices in efficiency but that has
the advantages of being very decoupled, easily distributable, fault tolerant, and flexible.
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Figure 3-3. Inference rules reading from and writing to a “blackboard”

A Word About “Artificial Intelligence”
It’s important to realize, of course, that “intelligence” doesn’t come from chains of
symbolic logic like this. In the past, many people have made the mistake of trying to
generate intelligent behavior this way, attempting to model large portions of human
knowledge and reasoning processes using only symbolic logic. These approaches al-
ways reveal that there are pretty severe limitations on what can be modeled. Predicates
are imprecise, so many inferences are impossible or are only correct in the context of a
particular application.

The examples here show triggers for making new assertions entirely from existing ones,
and also show ways to query other sources to create new assertions based on existing
ones.

Searching for Connections
A common question when working with a graph of data is how two entities are con-
nected. The most common algorithm for finding the shortest path between two points
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in a graph is an algorithm called breadth-first search. The breadth-first search algorithm
finds the shortest path between two nodes in a graph by taking the first node, looking
at all of its neighbors, looking at all of the neighbors of its neighbors, and so on until
the second node is found or until there are no new nodes to look at. The algorithm is
guaranteed to find the shortest path if one exists, but it may have to look at all of the
edges in the graph in order to find it.

Six Degrees of Kevin Bacon
A good example of the breadth-first search algorithm is the trivia game “Six Degrees of
Kevin Bacon,” where one player names a film actor, and the other player tries to connect
that actor to the actor Kevin Bacon through the shortest path of movies and co-stars.
For instance, one answer for the actor Val Kilmer would be that Val Kilmer starred in
Top Gun with Tom Cruise, and Tom Cruise starred in A Few Good Men with Kevin
Bacon, giving a path of length 2 because two movies had to be traversed. See Figure 3-4.

Figure 3-4. Breadth-first search from Val Kilmer to Kevin Bacon

Here’s an implementation of breadth-first search over the movie data introduced in
Chapter 2. On each iteration of the while loop, the algorithm processes a successive
group of nodes one edge further than the last. So on the first iteration, the starting actor
node is examined, and all of its adjacent movies that have not yet been seen are added
to the movieIds list. Then all of the actors in those movies are found and are added to
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the actorIds list if they haven’t yet been seen. If one of the actors is the one we are
looking for, the algorithm finishes.

The shortest path back to the starting node from each examined node is stored at each
step as well. This is done in the “parent” variable, which at each step points to the node
that was used to find the current node. This path of “parent” nodes can be followed
back to the starting node:

def moviebfs(startId, endId, graph):
    actorIds = [(startId, None)]
    # keep track of actors and movies that we've seen:
    foundIds = set()
    iterations = 0
    while len(actorIds) > 0:
        iterations += 1
        print "Iteration " + str(iterations)
        # get all adjacent movies:
        movieIds = []
        for actorId, parent in actorIds:
            for movieId, _, _ in graph.triples((None, "starring", actorId)): 
                if movieId not in foundIds: 
                    foundIds.add(movieId)
                    movieIds.append((movieId, (actorId, parent)))
        # get all adjacent actors:
        nextActorIds = []
        for movieId, parent in movieIds:
            for _, _, actorId in graph.triples((movieId, "starring", None)): 
                if actorId not in foundIds: 
                    foundIds.add(actorId)
                    # we found what we're looking for:
                    if actorId == endId: return (iterations, (actorId, \
                        (movieId, parent)))
                    else: nextActorIds.append((actorId, (movieId, parent)))
        actorIds = nextActorIds
    # we've run out of actors to follow, so there is no path:
    return (None, None)

Now we can define a function that runs moviebfs and recovers the shortest path:

def findpath(start, end, graph):
    # find the ids for the actors and compute bfs:
    startId = graph.value(None, "name", start)
    endId = graph.value(None, "name", end)
    distance, path = moviebfs(startId, endId, graph)
    print "Distance: " + str(distance)
    # walk the parent path back to the starting node:
    names = []
    while path is not None:
        id, nextpath = path
        names.append(graph.value(id, "name", None))
        path = nextpath
    print "Path: " + ", ".join(names)
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