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Chapter 2

MapReduce and the New

Software Stack

Modern data-mining applications, often called “big-data” analysis, require us
to manage immense amounts of data quickly. In many of these applications, the
data is extremely regular, and there is ample opportunity to exploit parallelism.
Important examples are:

1. The ranking of Web pages by importance, which involves an iterated
matrix-vector multiplication where the dimension is many billions.

2. Searches in “friends” networks at social-networking sites, which involve
graphs with hundreds of millions of nodes and many billions of edges.

To deal with applications such as these, a new software stack has evolved. These
programming systems are designed to get their parallelism not from a “super-
computer,” but from “computing clusters” – large collections of commodity
hardware, including conventional processors (“compute nodes”) connected by
Ethernet cables or inexpensive switches. The software stack begins with a new
form of file system, called a “distributed file system,” which features much larger
units than the disk blocks in a conventional operating system. Distributed file
systems also provide replication of data or redundancy to protect against the
frequent media failures that occur when data is distributed over thousands of
low-cost compute nodes.

On top of these file systems, many different higher-level programming sys-
tems have been developed. Central to the new software stack is a programming
system called MapReduce. Implementations of MapReduce enable many of the
most common calculations on large-scale data to be performed on computing
clusters efficiently and in a way that is tolerant of hardware failures during the
computation.

MapReduce systems are evolving and extending rapidly. Today, it is com-
mon for MapReduce programs to be created from still higher-level programming
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22 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

systems, often an implementation of SQL. Further, MapReduce turns out to be
a useful, but simple, case of more general and powerful ideas. We include
in this chapter a discussion of generalizations of MapReduce, first to systems
that support acyclic workflows and then to systems that implement recursive
algorithms.

Our last topic for this chapter is the design of good MapReduce algorithms,
a subject that often differs significantly from the matter of designing good
parallel algorithms to be run on a supercomputer. When designing MapReduce
algorithms, we often find that the greatest cost is in the communication. We
thus investigate communication cost and what it tells us about the most efficient
MapReduce algorithms. For several common applications of MapReduce we are
able to give families of algorithms that optimally trade the communication cost
against the degree of parallelism.

2.1 Distributed File Systems

Most computing is done on a single processor, with its main memory, cache, and
local disk (a compute node). In the past, applications that called for parallel
processing, such as large scientific calculations, were done on special-purpose
parallel computers with many processors and specialized hardware. However,
the prevalence of large-scale Web services has caused more and more computing
to be done on installations with thousands of compute nodes operating more
or less independently. In these installations, the compute nodes are commodity
hardware, which greatly reduces the cost compared with special-purpose parallel
machines.

These new computing facilities have given rise to a new generation of pro-
gramming systems. These systems take advantage of the power of parallelism
and at the same time avoid the reliability problems that arise when the comput-
ing hardware consists of thousands of independent components, any of which
could fail at any time. In this section, we discuss both the characteristics of
these computing installations and the specialized file systems that have been
developed to take advantage of them.

2.1.1 Physical Organization of Compute Nodes

The new parallel-computing architecture, sometimes called cluster computing,
is organized as follows. Compute nodes are stored on racks, perhaps 8–64
on a rack. The nodes on a single rack are connected by a network, typically
gigabit Ethernet. There can be many racks of compute nodes, and racks are
connected by another level of network or a switch. The bandwidth of inter-rack
communication is somewhat greater than the intrarack Ethernet, but given the
number of pairs of nodes that might need to communicate between racks, this
bandwidth may be essential. Figure 2.1 suggests the architecture of a large-
scale computing system. However, there may be many more racks and many
more compute nodes per rack.
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Switch

Racks of compute nodes

Figure 2.1: Compute nodes are organized into racks, and racks are intercon-
nected by a switch

It is a fact of life that components fail, and the more components, such as
compute nodes and interconnection networks, a system has, the more frequently
something in the system will not be working at any given time. For systems
such as Fig. 2.1, the principal failure modes are the loss of a single node (e.g.,
the disk at that node crashes) and the loss of an entire rack (e.g., the network
connecting its nodes to each other and to the outside world fails).

Some important calculations take minutes or even hours on thousands of
compute nodes. If we had to abort and restart the computation every time
one component failed, then the computation might never complete successfully.
The solution to this problem takes two forms:

1. Files must be stored redundantly. If we did not duplicate the file at several
compute nodes, then if one node failed, all its files would be unavailable
until the node is replaced. If we did not back up the files at all, and the
disk crashes, the files would be lost forever. We discuss file management
in Section 2.1.2.

2. Computations must be divided into tasks, such that if any one task fails
to execute to completion, it can be restarted without affecting other tasks.
This strategy is followed by the MapReduce programming system that we
introduce in Section 2.2.

2.1.2 Large-Scale File-System Organization

To exploit cluster computing, files must look and behave somewhat differently
from the conventional file systems found on single computers. This new file
system, often called a distributed file system or DFS (although this term has
had other meanings in the past), is typically used as follows.
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DFS Implementations

There are several distributed file systems of the type we have described
that are used in practice. Among these:

1. The Google File System (GFS), the original of the class.

2. Hadoop Distributed File System (HDFS), an open-source DFS used
with Hadoop, an implementation of MapReduce (see Section 2.2)
and distributed by the Apache Software Foundation.

3. CloudStore, an open-source DFS originally developed by Kosmix.

• Files can be enormous, possibly a terabyte in size. If you have only small
files, there is no point using a DFS for them.

• Files are rarely updated. Rather, they are read as data for some calcula-
tion, and possibly additional data is appended to files from time to time.
For example, an airline reservation system would not be suitable for a
DFS, even if the data were very large, because the data is changed so
frequently.

Files are divided into chunks, which are typically 64 megabytes in size.
Chunks are replicated, perhaps three times, at three different compute nodes.
Moreover, the nodes holding copies of one chunk should be located on different
racks, so we don’t lose all copies due to a rack failure. Normally, both the chunk
size and the degree of replication can be decided by the user.

To find the chunks of a file, there is another small file called the master node
or name node for that file. The master node is itself replicated, and a directory
for the file system as a whole knows where to find its copies. The directory itself
can be replicated, and all participants using the DFS know where the directory
copies are.

2.2 MapReduce

MapReduce is a style of computing that has been implemented in several sys-
tems, including Google’s internal implementation (simply called MapReduce)
and the popular open-source implementation Hadoop which can be obtained,
along with the HDFS file system from the Apache Foundation. You can use
an implementation of MapReduce to manage many large-scale computations
in a way that is tolerant of hardware faults. All you need to write are two
functions, called Map and Reduce, while the system manages the parallel exe-
cution, coordination of tasks that execute Map or Reduce, and also deals with
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the possibility that one of these tasks will fail to execute. In brief, a MapReduce
computation executes as follows:

1. Some number of Map tasks each are given one or more chunks from a
distributed file system. These Map tasks turn the chunk into a sequence
of key-value pairs. The way key-value pairs are produced from the input
data is determined by the code written by the user for the Map function.

2. The key-value pairs from each Map task are collected by a master con-
troller and sorted by key. The keys are divided among all the Reduce
tasks, so all key-value pairs with the same key wind up at the same Re-
duce task.

3. The Reduce tasks work on one key at a time, and combine all the val-
ues associated with that key in some way. The manner of combination
of values is determined by the code written by the user for the Reduce
function.

Figure 2.2 suggests this computation.

Input
chunks

Group
by keys

Key−value

(k,v)
pairs
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Keys with all

output
Combined
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tasks

Reduce
tasks

(k, [v, w,...])

Figure 2.2: Schematic of a MapReduce computation

2.2.1 The Map Tasks

We view input files for a Map task as consisting of elements, which can be
any type: a tuple or a document, for example. A chunk is a collection of
elements, and no element is stored across two chunks. Technically, all inputs
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to Map tasks and outputs from Reduce tasks are of the key-value-pair form,
but normally the keys of input elements are not relevant and we shall tend to
ignore them. Insisting on this form for inputs and outputs is motivated by the
desire to allow composition of several MapReduce processes.

The Map function takes an input element as its argument and produces
zero or more key-value pairs. The types of keys and values are each arbitrary.
Further, keys are not “keys” in the usual sense; they do not have to be unique.
Rather a Map task can produce several key-value pairs with the same key, even
from the same element.

Example 2.1 : We shall illustrate a MapReduce computation with what has
become the standard example application: counting the number of occurrences
for each word in a collection of documents. In this example, the input file is a
repository of documents, and each document is an element. The Map function
for this example uses keys that are of type String (the words) and values that
are integers. The Map task reads a document and breaks it into its sequence
of words w1, w2, . . . , wn. It then emits a sequence of key-value pairs where the
value is always 1. That is, the output of the Map task for this document is the
sequence of key-value pairs:

(w1, 1), (w2, 1), . . . , (wn, 1)

Note that a single Map task will typically process many documents – all
the documents in one or more chunks. Thus, its output will be more than the
sequence for the one document suggested above. Note also that if a word w
appears m times among all the documents assigned to that process, then there
will be m key-value pairs (w, 1) among its output. An option, which we discuss
in Section 2.2.4, is to combine these m pairs into a single pair (w, m), but we
can only do that because, as we shall see, the Reduce tasks apply an associative
and commutative operation, addition, to the values. 2

2.2.2 Grouping by Key

As soon as the Map tasks have all completed successfully, the key-value pairs are
grouped by key, and the values associated with each key are formed into a list of
values. The grouping is performed by the system, regardless of what the Map
and Reduce tasks do. The master controller process knows how many Reduce
tasks there will be, say r such tasks. The user typically tells the MapReduce
system what r should be. Then the master controller picks a hash function that
applies to keys and produces a bucket number from 0 to r − 1. Each key that
is output by a Map task is hashed and its key-value pair is put in one of r local
files. Each file is destined for one of the Reduce tasks.1

1Optionally, users can specify their own hash function or other method for assigning keys

to Reduce tasks. However, whatever algorithm is used, each key is assigned to one and only

one Reduce task.
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To perform the grouping by key and distribution to the Reduce tasks, the
master controller merges the files from each Map task that are destined for
a particular Reduce task and feeds the merged file to that process as a se-
quence of key-list-of-value pairs. That is, for each key k, the input to the
Reduce task that handles key k is a pair of the form (k, [v1, v2, . . . , vn]), where
(k, v1), (k, v2), . . . , (k, vn) are all the key-value pairs with key k coming from
all the Map tasks.

2.2.3 The Reduce Tasks

The Reduce function’s argument is a pair consisting of a key and its list of
associated values. The output of the Reduce function is a sequence of zero or
more key-value pairs. These key-value pairs can be of a type different from
those sent from Map tasks to Reduce tasks, but often they are the same type.
We shall refer to the application of the Reduce function to a single key and its
associated list of values as a reducer.

A Reduce task receives one or more keys and their associated value lists.
That is, a Reduce task executes one or more reducers. The outputs from all the
Reduce tasks are merged into a single file. Reducers may be partitioned among
a smaller number of Reduce tasks is by hashing the keys and associating each
Reduce task with one of the buckets of the hash function.

Example 2.2 : Let us continue with the word-count example of Example 2.1.
The Reduce function simply adds up all the values. The output of a reducer
consists of the word and the sum. Thus, the output of all the Reduce tasks is a
sequence of (w, m) pairs, where w is a word that appears at least once among
all the input documents and m is the total number of occurrences of w among
all those documents. 2

2.2.4 Combiners

Sometimes, a Reduce function is associative and commutative. That is, the
values to be combined can be combined in any order, with the same result.
The addition performed in Example 2.2 is an example of an associative and
commutative operation. It doesn’t matter how we group a list of numbers
v1, v2, . . . , vn; the sum will be the same.

When the Reduce function is associative and commutative, we can push
some of what the reducers do to the Map tasks. For example, instead of the
Map tasks in Example 2.1 producing many pairs (w, 1), (w, 1), . . ., we could
apply the Reduce function within the Map task, before the output of the Map
tasks is subject to grouping and aggregation. These key-value pairs would thus
be replaced by one pair with key w and value equal to the sum of all the 1’s in
all those pairs. That is, the pairs with key w generated by a single Map task
would be replaced by a pair (w, m), where m is the number of times that w
appears among the documents handled by this Map task. Note that it is still
necessary to do grouping and aggregation and to pass the result to the Reduce
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Reducers, Reduce Tasks, Compute Nodes, and Skew

If we want maximum parallelism, then we could use one Reduce task
to execute each reducer, i.e., a single key and its associated value list.
Further, we could execute each Reduce task at a different compute node,
so they would all execute in parallel. This plan is not usually the best. One
problem is that there is overhead associated with each task we create, so
we might want to keep the number of Reduce tasks lower than the number
of different keys. Moreover, often there are far more keys than there are
compute nodes available, so we would get no benefit from a huge number
of Reduce tasks.

Second, there is often significant variation in the lengths of the value
lists for different keys, so different reducers take different amounts of time.
If we make each reducer a separate Reduce task, then the tasks themselves
will exhibit skew – a significant difference in the amount of time each
takes. We can reduce the impact of skew by using fewer Reduce tasks
than there are reducers. If keys are sent randomly to Reduce tasks, we
can expect that there will be some averaging of the total time required by
the different Reduce tasks. We can further reduce the skew by using more
Reduce tasks than there are compute nodes. In that way, long Reduce
tasks might occupy a compute node fully, while several shorter Reduce
tasks might run sequentially at a single compute node.

tasks, since there will typically be one key-value pair with key w coming from
each of the Map tasks.

2.2.5 Details of MapReduce Execution

Let us now consider in more detail how a program using MapReduce is executed.
Figure 2.3 offers an outline of how processes, tasks, and files interact. Taking
advantage of a library provided by a MapReduce system such as Hadoop, the
user program forks a Master controller process and some number of Worker
processes at different compute nodes. Normally, a Worker handles either Map
tasks (a Map worker) or Reduce tasks (a Reduce worker), but not both.

The Master has many responsibilities. One is to create some number of
Map tasks and some number of Reduce tasks, these numbers being selected
by the user program. These tasks will be assigned to Worker processes by the
Master. It is reasonable to create one Map task for every chunk of the input
file(s), but we may wish to create fewer Reduce tasks. The reason for limiting
the number of Reduce tasks is that it is necessary for each Map task to create
an intermediate file for each Reduce task, and if there are too many Reduce
tasks the number of intermediate files explodes.

The Master keeps track of the status of each Map and Reduce task (idle,
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Figure 2.3: Overview of the execution of a MapReduce program

executing at a particular Worker, or completed). A Worker process reports to
the Master when it finishes a task, and a new task is scheduled by the Master
for that Worker process.

Each Map task is assigned one or more chunks of the input file(s) and
executes on it the code written by the user. The Map task creates a file for
each Reduce task on the local disk of the Worker that executes the Map task.
The Master is informed of the location and sizes of each of these files, and the
Reduce task for which each is destined. When a Reduce task is assigned by the
Master to a Worker process, that task is given all the files that form its input.
The Reduce task executes code written by the user and writes its output to a
file that is part of the surrounding distributed file system.

2.2.6 Coping With Node Failures

The worst thing that can happen is that the compute node at which the Master
is executing fails. In this case, the entire MapReduce job must be restarted.
But only this one node can bring the entire process down; other failures will be
managed by the Master, and the MapReduce job will complete eventually.

Suppose the compute node at which a Map worker resides fails. This fail-
ure will be detected by the Master, because it periodically pings the Worker
processes. All the Map tasks that were assigned to this Worker will have to
be redone, even if they had completed. The reason for redoing completed Map
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tasks is that their output destined for the Reduce tasks resides at that compute
node, and is now unavailable to the Reduce tasks. The Master sets the status
of each of these Map tasks to idle and will schedule them on a Worker when
one becomes available. The Master must also inform each Reduce task that the
location of its input from that Map task has changed.

Dealing with a failure at the node of a Reduce worker is simpler. The Master
simply sets the status of its currently executing Reduce tasks to idle. These
will be rescheduled on another reduce worker later.

2.2.7 Exercises for Section 2.2

Exercise 2.2.1 : Suppose we execute the word-count MapReduce program de-
scribed in this section on a large repository such as a copy of the Web. We shall
use 100 Map tasks and some number of Reduce tasks.

(a) Suppose we do not use a combiner at the Map tasks. Do you expect there
to be significant skew in the times taken by the various reducers to process
their value list? Why or why not?

(b) If we combine the reducers into a small number of Reduce tasks, say 10
tasks, at random, do you expect the skew to be significant? What if we
instead combine the reducers into 10,000 Reduce tasks?

! (c) Suppose we do use a combiner at the 100 Map tasks. Do you expect skew
to be significant? Why or why not?

2.3 Algorithms Using MapReduce

MapReduce is not a solution to every problem, not even every problem that
profitably can use many compute nodes operating in parallel. As we mentioned
in Section 2.1.2, the entire distributed-file-system milieu makes sense only when
files are very large and are rarely updated in place. Thus, we would not expect
to use either a DFS or an implementation of MapReduce for managing on-
line retail sales, even though a large on-line retailer such as Amazon.com uses
thousands of compute nodes when processing requests over the Web. The reason
is that the principal operations on Amazon data involve responding to searches
for products, recording sales, and so on, processes that involve relatively little
calculation and that change the database.2 On the other hand, Amazon might
use MapReduce to perform certain analytic queries on large amounts of data,
such as finding for each user those users whose buying patterns were most
similar.

The original purpose for which the Google implementation of MapReduce
was created was to execute very large matrix-vector multiplications as are

2Remember that even looking at a product you don’t buy causes Amazon to remember

that you looked at it.
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needed in the calculation of PageRank (See Chapter 5). We shall see that
matrix-vector and matrix-matrix calculations fit nicely into the MapReduce
style of computing. Another important class of operations that can use MapRe-
duce effectively are the relational-algebra operations. We shall examine the
MapReduce execution of these operations as well.

2.3.1 Matrix-Vector Multiplication by MapReduce

Suppose we have an n×n matrix M , whose element in row i and column j will
be denoted mij . Suppose we also have a vector v of length n, whose jth element
is vj . Then the matrix-vector product is the vector x of length n, whose ith
element xi is given by

xi =

n
∑

j=1

mijvj

If n = 100, we do not want to use a DFS or MapReduce for this calculation.
But this sort of calculation is at the heart of the ranking of Web pages that
goes on at search engines, and there, n is in the tens of billions.3 Let us first
assume that n is large, but not so large that vector v cannot fit in main memory
and thus be available to every Map task.

The matrix M and the vector v each will be stored in a file of the DFS. We
assume that the row-column coordinates of each matrix element will be discov-
erable, either from its position in the file, or because it is stored with explicit
coordinates, as a triple (i, j, mij). We also assume the position of element vj in
the vector v will be discoverable in the analogous way.

The Map Function: The Map function is written to apply to one element of
M . However, if v is not already read into main memory at the compute node
executing a Map task, then v is first read, in its entirety, and subsequently will
be available to all applications of the Map function performed at this Map task.
Each Map task will operate on a chunk of the matrix M . From each matrix
element mij it produces the key-value pair (i, mijvj). Thus, all terms of the
sum that make up the component xi of the matrix-vector product will get the
same key, i.

The Reduce Function: The Reduce function simply sums all the values as-
sociated with a given key i. The result will be a pair (i, xi).

2.3.2 If the Vector v Cannot Fit in Main Memory

However, it is possible that the vector v is so large that it will not fit in its
entirety in main memory. It is not required that v fit in main memory at a
compute node, but if it does not then there will be a very large number of

3The matrix is sparse, with on the average of 10 to 15 nonzero elements per row, since the

matrix represents the links in the Web, with mij nonzero if and only if there is a link from

page j to page i. Note that there is no way we could store a dense matrix whose side was

1010, since it would have 1020 elements.
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disk accesses as we move pieces of the vector into main memory to multiply
components by elements of the matrix. Thus, as an alternative, we can divide
the matrix into vertical stripes of equal width and divide the vector into an equal
number of horizontal stripes, of the same height. Our goal is to use enough
stripes so that the portion of the vector in one stripe can fit conveniently into
main memory at a compute node. Figure 2.4 suggests what the partition looks
like if the matrix and vector are each divided into five stripes.

MMatrix Vector v

Figure 2.4: Division of a matrix and vector into five stripes

The ith stripe of the matrix multiplies only components from the ith stripe
of the vector. Thus, we can divide the matrix into one file for each stripe, and
do the same for the vector. Each Map task is assigned a chunk from one of
the stripes of the matrix and gets the entire corresponding stripe of the vector.
The Map and Reduce tasks can then act exactly as was described above for the
case where Map tasks get the entire vector.

We shall take up matrix-vector multiplication using MapReduce again in
Section 5.2. There, because of the particular application (PageRank calcula-
tion), we have an additional constraint that the result vector should be part-
itioned in the same way as the input vector, so the output may become the
input for another iteration of the matrix-vector multiplication. We shall see
there that the best strategy involves partitioning the matrix M into square
blocks, rather than stripes.

2.3.3 Relational-Algebra Operations

There are a number of operations on large-scale data that are used in database
queries. Many traditional database applications involve retrieval of small am-
ounts of data, even though the database itself may be large. For example, a
query may ask for the bank balance of one particular account. Such queries are
not useful applications of MapReduce.

However, there are many operations on data that can be described easily in
terms of the common database-query primitives, even if the queries themselves
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are not executed within a database management system. Thus, a good starting
point for exploring applications of MapReduce is by considering the standard
operations on relations. We assume you are familiar with database systems,
the query language SQL, and the relational model, but to review, a relation is
a table with column headers called attributes. Rows of the relation are called
tuples. The set of attributes of a relation is called its schema. We often write
an expression like R(A1, A2, . . . , An) to say that the relation name is R and its
attributes are A1, A2, . . . , An.

From To

url1 url2

url1 url3

url2 url3

url2 url4

· · · · · ·

Figure 2.5: Relation Links consists of the set of pairs of URL’s, such that the
first has one or more links to the second

Example 2.3 : In Fig. 2.5 we see part of the relation Links that describes the
structure of the Web. There are two attributes, From and To. A row, or tuple,
of the relation is a pair of URL’s, such that there is at least one link from
the first URL to the second. For instance, the first row of Fig. 2.5 is the pair
(url1, url2) that says the Web page url1 has a link to page url2. While we
have shown only four tuples, the real relation of the Web, or the portion of it
that would be stored by a typical search engine, has billions of tuples. 2

A relation, however large, can be stored as a file in a distributed file system.
The elements of this file are the tuples of the relation.

There are several standard operations on relations, often referred to as re-
lational algebra, that are used to implement queries. The queries themselves
usually are written in SQL. The relational-algebra operations we shall discuss
are:

1. Selection: Apply a condition C to each tuple in the relation and produce
as output only those tuples that satisfy C. The result of this selection is
denoted σC(R).

2. Projection: For some subset S of the attributes of the relation, produce
from each tuple only the components for the attributes in S. The result
of this projection is denoted πS(R).

3. Union, Intersection, and Difference: These well-known set operations
apply to the sets of tuples in two relations that have the same schema.
There are also bag (multiset) versions of the operations in SQL, with
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somewhat unintuitive definitions, but we shall not go into the bag versions
of these operations here.

4. Natural Join: Given two relations, compare each pair of tuples, one from
each relation. If the tuples agree on all the attributes that are common
to the two schemas, then produce a tuple that has components for each
of the attributes in either schema and agrees with the two tuples on each
attribute. If the tuples disagree on one or more shared attributes, then
produce nothing from this pair of tuples. The natural join of relations R
and S is denoted R ⊲⊳ S. While we shall discuss executing only the nat-
ural join with MapReduce, all equijoins (joins where the tuple-agreement
condition involves equality of attributes from the two relations that do not
necessarily have the same name) can be executed in the same manner. We
shall give an illustration in Example 2.4.

5. Grouping and Aggregation:4 Given a relation R, partition its tuples
according to their values in one set of attributes G, called the grouping
attributes. Then, for each group, aggregate the values in certain other at-
tributes. The normally permitted aggregations are SUM, COUNT, AVG,
MIN, and MAX, with the obvious meanings. Note that MIN and MAX
require that the aggregated attributes have a type that can be compared,
e.g., numbers or strings, while SUM and AVG require that the type allow
arithmetic operations. We denote a grouping-and-aggregation operation
on a relation R by γX(R), where X is a list of elements that are either

(a) A grouping attribute, or

(b) An expression θ(A), where θ is one of the five aggregation opera-
tions such as SUM, and A is an attribute not among the grouping
attributes.

The result of this operation is one tuple for each group. That tuple has
a component for each of the grouping attributes, with the value common
to tuples of that group. It also has a component for each aggregation,
with the aggregated value for that group. We shall see an illustration in
Example 2.5.

Example 2.4 : Let us try to find the paths of length two in the Web, using
the relation Links of Fig. 2.5. That is, we want to find the triples of URL’s
(u, v, w) such that there is a link from u to v and a link from v to w. We
essentially want to take the natural join of Links with itself, but we first need
to imagine that it is two relations, with different schemas, so we can describe the
desired connection as a natural join. Thus, imagine that there are two copies
of Links, namely L1(U1, U2) and L2(U2, U3). Now, if we compute L1 ⊲⊳ L2,

4Some descriptions of relational algebra do not include these operations, and indeed they

were not part of the original definition of this algebra. However, these operations are so

important in SQL, that modern treatments of relational algebra include them.
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we shall have exactly what we want. That is, for each tuple t1 of L1 (i.e.,
each tuple of Links) and each tuple t2 of L2 (another tuple of Links, possibly
even the same tuple), see if their U2 components are the same. Note that
these components are the second component of t1 and the first component of
t2. If these two components agree, then produce a tuple for the result, with
schema (U1, U2, U3). This tuple consists of the first component of t1, the
second component of t1 (which must equal the first component of t2), and the
second component of t2.

We may not want the entire path of length two, but only want the pairs
(u, w) of URL’s such that there is at least one path from u to w of length two. If
so, we can project out the middle components by computing πU1,U3(L1 ⊲⊳ L2).
2

Example 2.5 : Imagine that a social-networking site has a relation

Friends(User, Friend)

This relation has tuples that are pairs (a, b) such that b is a friend of a. The site
might want to develop statistics about the number of friends members have.
Their first step would be to compute a count of the number of friends of each
user. This operation can be done by grouping and aggregation, specifically

γUser,COUNT(Friend)(Friends)

This operation groups all the tuples by the value in their first component, so
there is one group for each user. Then, for each group the count of the number
of friends of that user is made. The result will be one tuple for each group, and
a typical tuple would look like (Sally, 300), if user “Sally” has 300 friends. 2

2.3.4 Computing Selections by MapReduce

Selections really do not need the full power of MapReduce. They can be done
most conveniently in the map portion alone, although they could also be done
in the reduce portion alone. Here is a MapReduce implementation of selection
σC(R).

The Map Function: For each tuple t in R, test if it satisfies C. If so, produce
the key-value pair (t, t). That is, both the key and value are t.

The Reduce Function: The Reduce function is the identity. It simply passes
each key-value pair to the output.

Note that the output is not exactly a relation, because it has key-value pairs.
However, a relation can be obtained by using only the value components (or
only the key components) of the output.
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2.3.5 Computing Projections by MapReduce

Projection is performed similarly to selection, because projection may cause
the same tuple to appear several times, the Reduce function must eliminate
duplicates. We may compute πS(R) as follows.

The Map Function: For each tuple t in R, construct a tuple t′ by eliminating
from t those components whose attributes are not in S. Output the key-value
pair (t′, t′).

The Reduce Function: For each key t′ produced by any of the Map tasks,
there will be one or more key-value pairs (t′, t′). The Reduce function turns
(t′, [t′, t′, . . . , t′]) into (t′, t′), so it produces exactly one pair (t′, t′) for this key
t′.

Observe that the Reduce operation is duplicate elimination. This operation
is associative and commutative, so a combiner associated with each Map task
can eliminate whatever duplicates are produced locally. However, the Reduce
tasks are still needed to eliminate two identical tuples coming from different
Map tasks.

2.3.6 Union, Intersection, and Difference by MapReduce

First, consider the union of two relations. Suppose relations R and S have the
same schema. Map tasks will be assigned chunks from either R or S; it doesn’t
matter which. The Map tasks don’t really do anything except pass their input
tuples as key-value pairs to the Reduce tasks. The latter need only eliminate
duplicates as for projection.

The Map Function: Turn each input tuple t into a key-value pair (t, t).

The Reduce Function: Associated with each key t there will be either one or
two values. Produce output (t, t) in either case.

To compute the intersection, we can use the same Map function. However,
the Reduce function must produce a tuple only if both relations have the tuple.
If the key t has a list of two values [t, t] associated with it, then the Reduce
task for t should produce (t, t). However, if the value-list associated with key
t is just [t], then one of R and S is missing t, so we don’t want to produce a
tuple for the intersection.

The Map Function: Turn each tuple t into a key-value pair (t, t).

The Reduce Function: If key t has value list [t, t], then produce (t, t). Oth-
erwise, produce nothing.

The Difference R − S requires a bit more thought. The only way a tuple
t can appear in the output is if it is in R but not in S. The Map function
can pass tuples from R and S through, but must inform the Reduce function
whether the tuple came from R or S. We shall thus use the relation as the
value associated with the key t. Here is a specification for the two functions.



2.3. ALGORITHMS USING MAPREDUCE 37

The Map Function: For a tuple t in R, produce key-value pair (t, R), and
for a tuple t in S, produce key-value pair (t, S). Note that the intent is that
the value is the name of R or S (or better, a single bit indicating whether the
relation is R or S), not the entire relation.

The Reduce Function: For each key t, if the associated value list is [R], then
produce (t, t). Otherwise, produce nothing.

2.3.7 Computing Natural Join by MapReduce

The idea behind implementing natural join via MapReduce can be seen if we
look at the specific case of joining R(A, B) with S(B, C). We must find tuples
that agree on their B components, that is the second component from tuples
of R and the first component of tuples of S. We shall use the B-value of tuples
from either relation as the key. The value will be the other component and the
name of the relation, so the Reduce function can know where each tuple came
from.

The Map Function: For each tuple (a, b) of R, produce the key-value pair
(

b, (R, a)
)

. For each tuple (b, c) of S, produce the key-value pair
(

b, (S, c)
)

.

The Reduce Function: Each key value b will be associated with a list of pairs
that are either of the form (R, a) or (S, c). Construct all pairs consisting of one
with first component R and the other with first component S, say (R, a) and
(S, c). The output from this key and value list is a sequence of key-value pairs.
The key is irrelevant. Each value is one of the triples (a, b, c) such that (R, a)
and (S, c) are on the input list of values.

The same algorithm works if the relations have more than two attributes.
You can think of A as representing all those attributes in the schema of R but
not S. B represents the attributes in both schemas, and C represents attributes
only in the schema of S. The key for a tuple of R or S is the list of values in all
the attributes that are in the schemas of both R and S. The value for a tuple
of R is the name R together with the values of all the attributes belonging to
R but not to S, and the value for a tuple of S is the name S together with the
values of the attributes belonging to S but not R.

The Reduce function looks at all the key-value pairs with a given key and
combines those values from R with those values of S in all possible ways. From
each pairing, the tuple produced has the values from R, the key values, and the
values from S.

2.3.8 Grouping and Aggregation by MapReduce

As with the join, we shall discuss the minimal example of grouping and aggrega-
tion, where there is one grouping attribute and one aggregation. Let R(A, B, C)
be a relation to which we apply the operator γA,θ(B)(R). Map will perform the
grouping, while Reduce does the aggregation.

The Map Function: For each tuple (a, b, c) produce the key-value pair (a, b).
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The Reduce Function: Each key a represents a group. Apply the aggregation
operator θ to the list [b1, b2, . . . , bn] of B-values associated with key a. The
output is the pair (a, x), where x is the result of applying θ to the list. For
example, if θ is SUM, then x = b1 + b2 + · · · + bn, and if θ is MAX, then x is
the largest of b1, b2, . . . , bn.

If there are several grouping attributes, then the key is the list of the values
of a tuple for all these attributes. If there is more than one aggregation, then
the Reduce function applies each of them to the list of values associated with
a given key and produces a tuple consisting of the key, including components
for all grouping attributes if there is more than one, followed by the results of
each of the aggregations.

2.3.9 Matrix Multiplication

If M is a matrix with element mij in row i and column j, and N is a matrix
with element njk in row j and column k, then the product P = MN is the
matrix P with element pik in row i and column k, where

pik =
∑

j

mijnjk

It is required that the number of columns of M equals the number of rows of
N , so the sum over j makes sense.

We can think of a matrix as a relation with three attributes: the row number,
the column number, and the value in that row and column. Thus, we could view
matrix M as a relation M(I, J, V ), with tuples (i, j, mij), and we could view
matrix N as a relation N(J, K, W ), with tuples (j, k, njk). As large matrices are
often sparse (mostly 0’s), and since we can omit the tuples for matrix elements
that are 0, this relational representation is often a very good one for a large
matrix. However, it is possible that i, j, and k are implicit in the position of a
matrix element in the file that represents it, rather than written explicitly with
the element itself. In that case, the Map function will have to be designed to
construct the I, J , and K components of tuples from the position of the data.

The product MN is almost a natural join followed by grouping and ag-
gregation. That is, the natural join of M(I, J, V ) and N(J, K, W ), having
only attribute J in common, would produce tuples (i, j, k, v, w) from each tuple
(i, j, v) in M and tuple (j, k, w) in N . This five-component tuple represents the
pair of matrix elements (mij , njk). What we want instead is the product of
these elements, that is, the four-component tuple (i, j, k, v × w), because that
represents the product mijnjk. Once we have this relation as the result of one
MapReduce operation, we can perform grouping and aggregation, with I and
K as the grouping attributes and the sum of V × W as the aggregation. That
is, we can implement matrix multiplication as the cascade of two MapReduce
operations, as follows. First:

The Map Function: For each matrix element mij , produce the key value pair
(

j, (M, i, mij)
)

. Likewise, for each matrix element njk, produce the key value
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pair
(

j, (N, k, njk)
)

. Note that M and N in the values are not the matrices
themselves. Rather they are names of the matrices or (as we mentioned for the
similar Map function used for natural join) better, a bit indicating whether the
element comes from M or N .

The Reduce Function: For each key j, examine its list of associated values.
For each value that comes from M , say (M, i, mij), and each value that comes
from N , say (N, k, njk), produce a key-value pair with key equal to (i, k) and
value equal to the product of these elements, mijnjk.

Now, we perform a grouping and aggregation by another MapReduce operation.

The Map Function: This function is just the identity. That is, for every input
element with key (i, k) and value v, produce exactly this key-value pair.

The Reduce Function: For each key (i, k), produce the sum of the list of
values associated with this key. The result is a pair

(

(i, k), v
)

, where v is the
value of the element in row i and column k of the matrix P = MN .

2.3.10 Matrix Multiplication with One MapReduce Step

There often is more than one way to use MapReduce to solve a problem. You
may wish to use only a single MapReduce pass to perform matrix multiplication
P = MN . 5 It is possible to do so if we put more work into the two functions.
Start by using the Map function to create the sets of matrix elements that are
needed to compute each element of the answer P . Notice that an element of
M or N contributes to many elements of the result, so one input element will
be turned into many key-value pairs. The keys will be pairs (i, k), where i is a
row of M and k is a column of N . Here is a synopsis of the Map and Reduce
functions.

The Map Function: For each element mij of M , produce all the key-value
pairs

(

(i, k), (M, j, mij)
)

for k = 1, 2, . . ., up to the number of columns of
N . Similarly, for each element njk of N , produce all the key-value pairs
(

(i, k), (N, j, njk)
)

for i = 1, 2, . . ., up to the number of rows of M . As be-
fore, M and N are really bits to tell which of the two matrices a value comes
from.

The Reduce Function: Each key (i, k) will have an associated list with all
the values (M, j, mij) and (N, j, njk), for all possible values of j. The Reduce
function needs to connect the two values on the list that have the same value of
j, for each j. An easy way to do this step is to sort by j the values that begin
with M and sort by j the values that begin with N , in separate lists. The jth
values on each list must have their third components, mij and njk extracted
and multiplied. Then, these products are summed and the result is paired with
(i, k) in the output of the Reduce function.

5However, we show in Section 2.6.7 that two passes of MapReduce are usually better than

one for matrix multiplication.
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You may notice that if a row of the matrix M or a column of the matrix N
is so large that it will not fit in main memory, then the Reduce tasks will be
forced to use an external sort to order the values associated with a given key
(i, k). However, in that case, the matrices themselves are so large, perhaps 1020

elements, that it is unlikely we would attempt this calculation if the matrices
were dense. If they are sparse, then we would expect many fewer values to be
associated with any one key, and it would be feasible to do the sum of products
in main memory.

2.3.11 Exercises for Section 2.3

Exercise 2.3.1 : Design MapReduce algorithms to take a very large file of
integers and produce as output:

(a) The largest integer.

(b) The average of all the integers.

(c) The same set of integers, but with each integer appearing only once.

(d) The count of the number of distinct integers in the input.

Exercise 2.3.2 : Our formulation of matrix-vector multiplication assumed that
the matrix M was square. Generalize the algorithm to the case where M is an
r-by-c matrix for some number of rows r and columns c.

! Exercise 2.3.3 : In the form of relational algebra implemented in SQL, rela-
tions are not sets, but bags; that is, tuples are allowed to appear more than
once. There are extended definitions of union, intersection, and difference for
bags, which we shall define below. Write MapReduce algorithms for computing
the following operations on bags R and S:

(a) Bag Union, defined to be the bag of tuples in which tuple t appears the
sum of the numbers of times it appears in R and S.

(b) Bag Intersection, defined to be the bag of tuples in which tuple t appears
the minimum of the numbers of times it appears in R and S.

(c) Bag Difference, defined to be the bag of tuples in which the number of
times a tuple t appears is equal to the number of times it appears in R
minus the number of times it appears in S. A tuple that appears more
times in S than in R does not appear in the difference.

! Exercise 2.3.4 : Selection can also be performed on bags. Give a MapReduce
implementation that produces the proper number of copies of each tuple t that
passes the selection condition. That is, produce key-value pairs from which the
correct result of the selection can be obtained easily from the values.
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Exercise 2.3.5 : The relational-algebra operation R(A, B) ⊲⊳ B<C S(C, D)
produces all tuples (a, b, c, d) such that tuple (a, b) is in relation R, tuple (c, d) is
in S, and b < c. Give a MapReduce implementation of this operation, assuming
R and S are sets.

2.4 Extensions to MapReduce

MapReduce has proved so influential that it has spawned a number of extensions
and modifications. These systems typically share a number of characteristics
with MapReduce systems:

1. They are built on a distributed file system.

2. They manage very large numbers of tasks that are instantiations of a
small number of user-written functions.

3. They incorporate a method for dealing with most of the failures that
occur during the execution of a large job, without having to restart that
job from the beginning.

In this section, we shall mention some of the interesting directions being ex-
plored. References to the details of the systems mentioned can be found in the
bibliographic notes for this chapter.

2.4.1 Workflow Systems

Two experimental systems called Clustera from the University of Wisconsin and
Hyracks from the University of California at Irvine extend MapReduce from the
simple two-step workflow (the Map function feeds the Reduce function) to any
collection of functions, with an acyclic graph representing workflow among the
functions. That is, there is an acyclic flow graph whose arcs a → b represent
the fact that function a’s output is input to function b. A suggestion of what a
workflow might look like is in Fig. 2.6. There, five functions, f through j, pass
data from left to right in specific ways, so the flow of data is acyclic and no task
needs to provide data out before its input is available. For instance, function h
takes its input from a preexisting file of the distributed file system. Each of h’s
output elements is passed to at least one of the functions i and j.

In analogy to Map and Reduce functions, each function of a workflow can
be executed by many tasks, each of which is assigned a portion of the input to
the function. A master controller is responsible for dividing the work among
the tasks that implement a function, usually by hashing the input elements to
decide on the proper task to receive an element. Thus, like Map tasks, each task
implementing a function f has an output file of data destined for each of the
tasks that implement the successor function(s) of f . These files are delivered
by the Master at the appropriate time – after the task has completed its work.
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Figure 2.6: An example of a workflow that is more complex than Map feeding
Reduce

The functions of a workflow, and therefore the tasks, share with MapReduce
tasks the important property that they only deliver output after they complete.
As a result, if a task fails, it has not delivered output to any of its successors
in the flow graph. A master controller can therefore restart the failed task at
another compute node, without worrying that the output of the restarted task
will duplicate output that previously was passed to some other task.

Many applications of workflow systems such as Clustera or Hyracks are
cascades of MapReduce jobs. An example would be the join of three relations,
where one MapReduce job joins the first two relations, and a second MapReduce
job joins the third relation with the result of joining the first two relations. Both
jobs would use an algorithm like that of Section 2.3.7.

There is an advantage to implementing such cascades as a single workflow.
For example, the flow of data among tasks, and its replication, can be managed
by the master controller, without need to store the temporary file that is out-
put of one MapReduce job in the distributed file system. By locating tasks at
compute nodes that have a copy of their input, we can avoid much of the com-
munication that would be necessary if we stored the result of one MapReduce
job and then initiated a second MapReduce job (although Hadoop and other
MapReduce systems also try to locate Map tasks where a copy of their input is
already present).

2.4.2 Recursive Extensions to MapReduce

Many large-scale computations are really recursions. An important example is
PageRank, which is the subject of Chapter 5. That computation is, in sim-
ple terms, the computation of the fixedpoint of a matrix-vector multiplication.
It is computed under MapReduce systems by the iterated application of the
matrix-vector multiplication algorithm described in Section 2.3.1, or by a more
complex strategy that we shall introduce in Section 5.2. The iteration typi-
cally continues for an unknown number of steps, each step being a MapReduce
job, until the results of two consecutive iterations are sufficiently close that we
believe convergence has occurred.

The reason recursions are normally implemented by iterated MapReduce



2.4. EXTENSIONS TO MAPREDUCE 43

jobs is that a true recursive task does not have the property necessary for
independent restart of failed tasks. It is impossible for a collection of mutually
recursive tasks, each of which has an output that is input to at least some of
the other tasks, to produce output only at the end of the task. If they all
followed that policy, no task would ever receive any input, and nothing could
be accomplished. As a result, some mechanism other than simple restart of
failed tasks must be implemented in a system that handles recursive workflows
(flow graphs that are not acyclic). We shall start by studying an example of a
recursion implemented as a workflow, and then discuss approaches to dealing
with task failures.

Example 2.6 : Suppose we have a directed graph whose arcs are represented
by the relation E(X, Y ), meaning that there is an arc from node X to node Y .
We wish to compute the paths relation P (X, Y ), meaning that there is a path
of length 1 or more from node X to node Y . That is, P is the transitive closure
of E. A simple recursive algorithm to do so is:

1. Start with P (X, Y ) = E(X, Y ).

2. While changes to the relation P occur, add to P all tuples in

πX,Y

(

P (X, Z) ⊲⊳ P (Z, Y )
)

That is, find pairs of nodes X and Y such that for some node Z there is
known to be a path from X to Z and also a path from Z to Y .

Figure 2.7 suggests how we could organize recursive tasks to perform this
computation. There are two kinds of tasks: Join tasks and Dup-elim tasks.
There are n Join tasks, for some n, and each corresponds to a bucket of a hash
function h. A path tuple P (a, b), when it is discovered, becomes input to two
Join tasks: those numbered h(a) and h(b). The job of the ith Join task, when
it receives input tuple P (a, b), is to find certain other tuples seen previously
(and stored locally by that task).

1. Store P (a, b) locally.

2. If h(a) = i then look for tuples P (x, a) and produce output tuple P (x, b).

3. If h(b) = i then look for tuples P (b, y) and produce output tuple P (a, y).

Note that in rare cases, we have h(a) = h(b), so both (2) and (3) are executed.
But generally, only one of these needs to be executed for a given tuple.

There are also m Dup-elim tasks, and each corresponds to a bucket of a hash
function g that takes two arguments. If P (c, d) is an output of some Join task,
then it is sent to Dup-elim task j = g(c, d). On receiving this tuple, the jth
Dup-elim task checks that it had not received it before, since its job is duplicate
elimination. If previously received, the tuple is ignored. But if this tuple is new,
it is stored locally and sent to two Join tasks, those numbered h(c) and h(d).
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Figure 2.7: Implementation of transitive closure by a collection of recursive
tasks

Every Join task has m output files – one for each Dup-elim task – and every
Dup-elim task has n output files – one for each Join task. These files may be
distributed according to any of several strategies. Initially, the E(a, b) tuples
representing the arcs of the graph are distributed to the Dup-elim tasks, with
E(a, b) being sent as P (a, b) to Dup-elim task g(a, b). The Master can wait until
each Join task has processed its entire input for a round. Then, all output files
are distributed to the Dup-elim tasks, which create their own output. That
output is distributed to the Join tasks and becomes their input for the next
round. Alternatively, each task can wait until it has produced enough output
to justify transmitting its output files to their destination, even if the task has
not consumed all its input. 2

In Example 2.6 it is not essential to have two kinds of tasks. Rather, Join
tasks could eliminate duplicates as they are received, since they must store
their previously received inputs anyway. However, this arrangement has an
advantage when we must recover from a task failure. If each task stores all
the output files it has ever created, and we place Join tasks on different racks
from the Dup-elim tasks, then we can deal with any single compute node or
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Pregel and Giraph

Like MapReduce, Pregel was developed originally at Google. Also like
MapReduce, there is an Apache, open-source equivalent, called Giraph.

single rack failure. That is, a Join task needing to be restarted can get all the
previously generated inputs that it needs from the Dup-elim tasks, and vice
versa.

In the particular case of computing transitive closure, it is not necessary to
prevent a restarted task from generating outputs that the original task gener-
ated previously. In the computation of the transitive closure, the rediscovery of
a path does not influence the eventual answer. However, many computations
cannot tolerate a situation where both the original and restarted versions of a
task pass the same output to another task. For example, if the final step of the
computation were an aggregation, say a count of the number of nodes reached
by each node in the graph, then we would get the wrong answer if we counted
a path twice. In such a case, the master controller can record what files each
task generated and passed to other tasks. It can then restart a failed task and
ignore those files when the restarted version produces them a second time.

2.4.3 Pregel

Another approach to managing failures when implementing recursive algorithms
on a computing cluster is represented by the Pregel system. This system views
its data as a graph. Each node of the graph corresponds roughly to a task
(although in practice many nodes of a large graph would be bundled into a
single task, as in the Join tasks of Example 2.6). Each graph node generates
output messages that are destined for other nodes of the graph, and each graph
node processes the inputs it receives from other nodes.

Example 2.7 : Suppose our data is a collection of weighted arcs of a graph,
and we want to find, for each node of the graph, the length of the shortest
path to each of the other nodes. Initially, each graph node a stores the set of
pairs (b, w) such that there is an arc from a to b of weight w. These facts are
initially sent to all other nodes, as triples (a, b, w).6 When the node a receives
a triple (c, d, w), it looks up its current distance to c; that is, it finds the pair
(c, v) stored locally, if there is one. It also finds the pair (d, u) if there is one.
If w + v < u, then the pair (d, u) is replaced by (d, w + v), and if there was
no pair (d, u), then the pair (d, w + v) is stored at the node a. Also, the other
nodes are sent the message (a, d, w + v) in either of these two cases. 2

6This algorithm uses much too much communication, but it will serve as a simple example

of the Pregel computation model.
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Computations in Pregel are organized into supersteps. In one superstep, all
the messages that were received by any of the nodes at the previous superstep
(or initially, if it is the first superstep) are processed, and then all the messages
generated by those nodes are sent to their destination.

In case of a compute-node failure, there is no attempt to restart the failed
tasks at that compute node. Rather, Pregel checkpoints its entire computation
after some of the supersteps. A checkpoint consists of making a copy of the
entire state of each task, so it can be restarted from that point if necessary.
If any compute node fails, the entire job is restarted from the most recent
checkpoint.

Although this recovery strategy causes many tasks that have not failed to
redo their work, it is satisfactory in many situations. Recall that the reason
MapReduce systems support restart of only the failed tasks is that we want
assurance that the expected time to complete the entire job in the face of fail-
ures is not too much greater than the time to run the job with no failures.
Any failure-management system will have that property as long as the time
to recover from a failure is much less than the average time between failures.
Thus, it is only necessary that Pregel checkpoints its computation after a num-
ber of supersteps such that the probability of a failure during that number of
supersteps is low.

2.4.4 Exercises for Section 2.4

! Exercise 2.4.1 : Suppose a job consists of n tasks, each of which takes time t
seconds. Thus, if there are no failures, the sum over all compute nodes of the
time taken to execute tasks at that node is nt. Suppose also that the probability
of a task failing is p per job per second, and when a task fails, the overhead of
management of the restart is such that it adds 10t seconds to the total execution
time of the job. What is the total expected execution time of the job?

! Exercise 2.4.2 : Suppose a Pregel job has a probability p of a failure during
any superstep. Suppose also that the execution time (summed over all compute
nodes) of taking a checkpoint is c times the time it takes to execute a superstep.
To minimize the expected execution time of the job, how many supersteps
should elapse between checkpoints?

2.5 The Communication Cost Model

In this section we shall introduce a model for measuring the quality of algorithms
implemented on a computing cluster of the type so far discussed in this chapter.
We assume the computation is described by an acyclic workflow, as discussed
in Section 2.4.1. For many applications, the bottleneck is moving data among
tasks, such as transporting the outputs of Map tasks to their proper Reduce
tasks. As an example, we explore the computation of multiway joins as single
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MapReduce jobs, and we see that in some situations, this approach is more
efficient than the straightforward cascade of 2-way joins.

2.5.1 Communication-Cost for Task Networks

Imagine that an algorithm is implemented by an acyclic network of tasks. These
tasks could be Map tasks feeding Reduce tasks, as in a standard MapReduce
algorithm, or they could be several MapReduce jobs cascaded, or a more general
workflow structure, such as a collection of tasks each of which implements the
workflow of Fig. 2.6.7 The communication cost of a task is the size of the input
to the task. This size can be measured in bytes. However, since we shall be
using relational database operations as examples, we shall often use the number
of tuples as a measure of size.

The communication cost of an algorithm is the sum of the communication
cost of all the tasks implementing that algorithm. We shall focus on the commu-
nication cost as the way to measure the efficiency of an algorithm. In particular,
we do not consider the amount of time it takes each task to execute when es-
timating the running time of an algorithm. While there are exceptions, where
execution time of tasks dominates, these exceptions are rare in practice. We
can explain and justify the importance of communication cost as follows.

• The algorithm executed by each task tends to be very simple, often linear
in the size of its input.

• The typical interconnect speed for a computing cluster is one gigabit per
second. That may seem like a lot, but it is slow compared with the speed
at which a processor executes instructions. Moreover, in many cluster
architectures, there is competition for the interconnect when several com-
pute nodes need to communicate at the same time. As a result, the
compute node can do a lot of work on a received input element in the
time it takes to deliver that element.

• Even if a task executes at a compute node that has a copy of the chunk(s)
on which the task operates, that chunk normally will be stored on disk,
and the time taken to move the data into main memory may exceed the
time needed to operate on the data once it is available in memory.

Assuming that communication cost is the dominant cost, we might still ask
why we count only input size, and not output size. The answer to this question
involves two points:

1. If the output of one task τ is input to another task, then the size of τ ’s
output will be accounted for when measuring the input size for the receiv-
ing task. Thus, there is no reason to count the size of any output except
for those tasks whose output forms the result of the entire algorithm.

7Recall that this figure represented functions, not tasks. As a network of tasks, there

would be, for example, many tasks implementing function f , each of which feeds data to each

of the tasks for function g and each of the tasks for function i.



48 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

2. But in practice, the algorithm output is rarely large compared with the
input or the intermediate data produced by the algorithm. The reason
is that massive outputs cannot be used unless they are summarized or
aggregated in some way. For example, although we talked in Example 2.6
of computing the entire transitive closure of a graph, in practice we would
want something much simpler, such as the count of the number of nodes
reachable from each node, or the set of nodes reachable from a single
node.

Example 2.8 : Let us evaluate the communication cost for the join algorithm
from Section 2.3.7. Suppose we are joining R(A, B) ⊲⊳ S(B, C), and the sizes
of relations R and S are r and s, respectively. Each chunk of the files holding
R and S is fed to one Map task, so the sum of the communication costs for all
the Map tasks is r + s. Note that in a typical execution, the Map tasks will
each be executed at a compute node holding a copy of the chunk to which it
applies. Thus, no internode communication is needed for the Map tasks, but
they still must read their data from disk. Since all the Map tasks do is make a
simple transformation of each input tuple into a key-value pair, we expect that
the computation cost will be small compared with the communication cost,
regardless of whether the input is local to the task or must be transported to
its compute node.

The sum of the outputs of the Map tasks is roughly as large as their in-
puts. Each output key-value pair is sent to exactly one Reduce task, and it is
unlikely that this Reduce task will execute at the same compute node. There-
fore, communication from Map tasks to Reduce tasks is likely to be across the
interconnect of the cluster, rather than memory-to-disk. This communication
is O(r + s), so the communication cost of the join algorithm is O(r + s).

The Reduce tasks execute the reducer (application of the Reduce function
to a key and its associated value list) for one or more values of attribute B.
Each reducer takes the inputs it receives and divides them between tuples that
came from R and those that came from S. Each tuple from R pairs with each
tuple from S to produce one output. The output size for the join can be either
larger or smaller than r + s, depending on how likely it is that a given R-tuple
joins with a given S-tuple. For example, if there are many different B-values,
we would expect the output to be small, while if there are few B-values, a large
output is likely.

If the output is large, then the computation cost of generating all the outputs
from a reducer could be much larger than O(r+s). However, we shall rely on our
supposition that if the output of the join is large, then there is probably some
aggregation being done to reduce the size of the output. It will be necessary to
communicate the result of the join to another collection of tasks that perform
this aggregation, and thus the communication cost will be at least proportional
to the computation needed to produce the output of the join. 2
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2.5.2 Wall-Clock Time

While communication cost often influences our choice of algorithm to use in
a cluster-computing environment, we must also be aware of the importance of
wall-clock time, the time it takes a parallel algorithm to finish. Using careless
reasoning, one could minimize total communication cost by assigning all the
work to one task, and thereby minimize total communication. However, the
wall-clock time of such an algorithm would be quite high. The algorithms we
suggest, or have suggested so far, have the property that the work is divided
fairly among the tasks. Therefore, the wall-clock time would be approximately
as small as it could be, given the number of compute nodes available.

2.5.3 Multiway Joins

To see how analyzing the communication cost can help us choose an algorithm
in the cluster-computing environment, we shall examine carefully the case of a
multiway join. There is a general theory in which we:

1. Select certain attributes of the relations involved in the natural join of
three or more relations to have their values hashed, each to some number
of buckets.

2. Select the number of buckets for each of these attributes, subject to the
constraint that the product of the numbers of buckets for each attribute
is k, the number of reducers that will be used.

3. Identify each of the k reducers with a vector of bucket numbers. These
vectors have one component for each of the attributes selected at step (1).

4. Send tuples of each relation to all those reducers where it might find tuples
to join with. That is, the given tuple t will have values for some of the
attributes selected at step (1), so we can apply the hash function(s) to
those values to determine certain components of the vector that identifies
the reducers. Other components of the vector are unknown, so t must
be sent to reducers for all vectors having any value in these unknown
components.

Some examples of this general technique appear in the exercises.
Here, we shall look only at the join R(A, B) ⊲⊳ S(B, C) ⊲⊳ T (C, D) as

an example. Suppose that the relations R, S, and T have sizes r, s, and t,
respectively, and for simplicity, suppose p is the probability that

1. An R-tuple and and S-tuple agree on B, and also the probability that

2. An S-tuple and a T -tuple agree on C.

If we join R and S first, using the MapReduce algorithm of Section 2.3.7,
then the communication cost is O(r + s), and the size of the intermediate join
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R ⊲⊳ S is prs. When we join this result with T , the communication of this
second MapReduce job is O(t + prs). Thus, the entire communication cost of
the algorithm consisting of two 2-way joins is O(r + s + t + prs). If we instead
join S and T first, and then join R with the result, we get another algorithm
whose communication cost is O(r + s + t + pst).

A third way to take this join is to use a single MapReduce job that joins
the three relations at once. Suppose that we plan to use k reducers for this
job. Pick numbers b and c representing the number of buckets into which we
shall hash B- and C-values, respectively. Let h be a hash function that sends
B-values into b buckets, and let g be another hash function that sends C-values
into c buckets. We require that bc = k; that is, each reducer corresponds to
a pair of buckets, one for the B-value and one for the C-value. The reducer
corresponding to bucket pair (i, j) is responsible for joining the tuples R(u, v),
S(v, w), and T (w, x) whenever h(v) = i and g(w) = j.

As a result, the Map tasks that send tuples of R, S, and T to the reducers
that need them must send R- and T -tuples to more than one reducer. For an
S-tuple S(v, w), we know the B- and C-values, so we can send this tuple only to
the reducer for

(

h(v), g(w)
)

. However, consider an R-tuple R(u, v). We know

it only needs to go to reducers that correspond to
(

h(v), y
)

, for some y. But
we don’t know y; the value of C could be anything as far as we know. Thus,
we must send R(u, v) to c reducers, since y could be any of the c buckets for
C-values. Similarly, we must send the T -tuple T (w, x) to each of the reducers
(

z, g(w)
)

for any z. There are b such reducers.

0 1 2 3

2

1

0

g(T.C) = 1

g(C) = h(S.B) = 2 and g(S.C) = 1

h(B) =

h(R.B) = 2
3

Figure 2.8: Sixteen reducers together perform a 3-way join

Example 2.9 : Suppose that b = c = 4, so k = 16. The sixteen reducers can
be thought of as arranged in a rectangle, as suggested by Fig. 2.8. There, we
see a hypothetical S-tuple S(v, w) for which h(v) = 2 and g(w) = 1. This
tuple is sent by its Map task only to the reducer for key (2, 1). We also see
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Computation Cost of the 3-Way Join

Each of the reducers must join of parts of the three relations, and it is
reasonable to ask whether this join can be taken in time that is linear
in the size of the input to that Reduce task. While more complex joins
might not be computable in linear time, the join of our running example
can be executed at each Reduce process efficiently. First, create an index
on R.B, to organize the R-tuples received. Likewise, create an index on
T.C for the T -tuples. Then, consider each received S-tuple, S(v, w). Use
the index on R.B to find all R-tuples with R.B = v and use the index on
T.C to find all T -tuples with T.C = w.

an R-tuple R(u, v). Since h(v) = 2, this tuple is sent to all reducers (2, y), for
y = 1, 2, 3, 4. Finally, we see a T -tuple T (w, x). Since g(w) = 1, this tuple is
sent to all reducers (z, 1) for z = 1, 2, 3, 4. Notice that these three tuples join,
and they meet at exactly one reducer, the reducer for key (2, 1). 2

Now, suppose that the sizes of R, S, and T are different; recall we use r,
s, and t, respectively, for those sizes. If we hash B-values to b buckets and
C-values to c buckets, where bc = k, then the total communication cost for
moving the tuples to the proper reducers is the sum of:

1. s to move each tuple S(v, w) once to the reducer
(

h(v), g(w)
)

.

2. cr to move each tuple R(u, v) to the c reducers
(

h(v), y
)

for each of the c
possible values of y.

3. bt to move each tuple T (w, x) to the b reducers
(

z, g(w)
)

for each of the
b possible values of z.

There is also a cost r + s + t to make each tuple of each relation be input to
one of the Map tasks. This cost is fixed, independent of b, c, and k.

We must select b and c, subject to the constraint bc = k, to minimize
s + cr + bt. We shall use the technique of Lagrangean multipliers to find the
place where the function s + cr + bt− λ(bc− k) has its derivatives with respect
to b and c equal to 0. That is, we must solve the equations r − λb = 0 and
t − λc = 0. Since r = λb and t = λc, we may multiply corresponding sides of
these equations to get rt = λ2bc. Since bc = k, we get rt = λ2k, or λ =

√

rt/k.

Thus, the minimum communication cost is obtained when c = t/λ =
√

kt/r,

and b = r/λ =
√

kr/t.

If we substitute these values into the formula s + cr + bt, we get s + 2
√

krt.
That is the communication cost for the Reduce tasks, to which we must add
the cost s + r + t for the communication cost of the Map tasks. The total
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communication cost is thus r + 2s + t + 2
√

krt. In most circumstances, we can
neglect r + t, because it will be less than 2

√
krt, usually by a factor of O(

√
k).

Example 2.10 : Let us see under what circumstances the 3-way join has lower
communication cost than the cascade of two 2-way joins. To make matters
simple, let us assume that R, S, and T are all the same relation R, which
represents the “friends” relation in a social network like Facebook. There are
roughly a billion subscribers on Facebook, with an average of 300 friends each, so
relation R has r = 3 × 1011 tuples. Suppose we want to compute R ⊲⊳ R ⊲⊳ R,
perhaps as part of a calculation to find the number of friends of friends of
friends each subscriber has, or perhaps just the person with the largest number
of friends of friends of friends.8 The cost of the 3-way join of R with itself is
4r + 2r

√
k; 3r represents the cost of the Map tasks, and r + 2

√
kr2 is the cost

of the Reduce tasks. Since we assume r = 3× 1011, this cost is 1, 2× 1012 +6×
1011

√
k.

Now consider the communication cost of joining R with itself, and then
joining the result with R again. The Map and Reduce tasks for the first join each
have a cost of 2r, so the first join only has communication cost 4r = 1.2× 1012.
But the size of R ⊲⊳ R is large. We cannot say exactly how large, since friends
tend to fall into cliques, and therefore a person with 300 friends will have many
fewer than the maximum possible number of friends of friends, which is 90,000.
Let us estimate conservatively that the size of R ⊲⊳ R is not 300r, but only
30r, or 9 × 1012. The communication cost for the second join of (R ⊲⊳ R) ⊲⊳ R
is thus 1.8 × 1013 + 6 × 1011. The total cost of the two joins is therefore
1.2 × 1012 + 1.8 × 1013 + 6 × 1011 = 1.98 × 1013.

We must ask whether the cost of the 3-way join, which is

1.2 × 1012 + 6 × 1011
√

k

is less than 1.98 × 1013. That is so, provided 6 × 1011
√

k < 1.86 × 1013, or√
k < 31. That is, the 3-way join will be preferable provided we use no more

than 312 = 961 reducers. 2

2.5.4 Exercises for Section 2.5

Exercise 2.5.1 : What is the communication cost of each of the following
algorithms, as a function of the size of the relations, matrices, or vectors to
which they are applied?

(a) The matrix-vector multiplication algorithm of Section 2.3.2.

(b) The union algorithm of Section 2.3.6.

(c) The aggregation algorithm of Section 2.3.8.

8This person, or more generally, people with large extended circles of friends, are good

people to use to start a marketing campaign by giving them free samples.
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Star Joins

A common structure for data mining of commercial data is the star join.
For example, a chain store like Walmart keeps a fact table whose tu-
ples each represent a single sale. This relation looks like F (A1, A2, . . .),
where each attribute Ai is a key representing one of the important com-
ponents of the sale, such as the purchaser, the item purchased, the store
branch, or the date. For each key attribute there is a dimension table
giving information about the participant. For instance, the dimension ta-
ble D(A1, B11, B12, . . .) might represent purchasers. A1 is the purchaser
ID, the key for this relation. The B1i’s might give the purchaser’s name,
address, phone, and so on. Typically, the fact table is much larger than
the dimension tables. For instance, there might be a fact table of a billion
tuples and ten dimension tables of a million tuples each.

Analysts mine this data by asking analytic queries that typically join
the fact table with several of the dimension tables (a “star join”) and then
aggregate the result into a useful form. For instance, an analyst might ask
“give me a table of sales of pants, broken down by region and color, for
each month of 2012.” Under the communication-cost model of this section,
joining the fact table and dimension tables by a multiway join is almost
certain to be more efficient than joining the relations in pairs. In fact, it
may make sense to store the fact table over however many compute nodes
are available, and replicate the dimension tables permanently in exactly
the same way as we would replicate them should we take the join of the
fact table and all the dimension tables. In this special case, only the
key attributes (the A’s above) are hashed to buckets, and the number of
buckets for each key attribute is proportional to the size of its dimension
table.

(d) The matrix-multiplication algorithm of Section 2.3.10.

! Exercise 2.5.2 : Suppose relations R, S, and T have sizes r, s, and t, respec-
tively, and we want to take the 3-way join R(A, B) ⊲⊳ S(B, C) ⊲⊳ T (A, C),
using k reducers. We shall hash values of attributes A, B, and C to a, b, and c
buckets, respectively, where abc = k. Each reducer is associated with a vector
of buckets, one for each of the three hash functions. Find, as a function of r, s,
t, and k, the values of a, b, and c that minimize the communication cost of the
algorithm.

! Exercise 2.5.3 : Suppose we take a star join of a fact table F (A1, A2, . . . , Am)
with dimension tables Di(Ai, Bi) for i = 1, 2, . . . , m. Let there be k reducers,
each associated with a vector of buckets, one for each of the key attributes
A1, A2, . . . , Am. Suppose the number of buckets into which we hash Ai is ai.
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Naturally, a1a2 · · · am = k. Finally, suppose each dimension table Di has size
di, and the size of the fact table is much larger than any of these sizes. Find
the values of the ai’s that minimize the cost of taking the star join as one
MapReduce operation.

2.6 Complexity Theory for MapReduce

Now, we shall explore the design of MapReduce algorithms in more detail. Sec-
tion 2.5 introduced the idea that communication between the Map and Reduce
tasks often accounts for the largest fraction of the time spent by these tasks.
Here, we shall look at how the communication cost relates to other desiderata
for MapReduce algorithms, in particular our desire to shrink the wall-clock time
and to execute each reducer in main memory. Recall that a “reducer” is the
execution of the Reduce function on a single key and its associated value list.
The point of the exploration in this section is that for many problems there is a
spectrum of MapReduce algorithms requiring different amounts of communica-
tion. Moreover, the less communication an algorithm uses, the worse it may be
in other respects, including wall-clock time and the amount of main memory it
requires.

2.6.1 Reducer Size and Replication Rate

Let us now introduce the two parameters that characterize families of MapRe-
duce algorithms. The first is the reducer size, which we denote by q. This
parameter is the upper bound on the number of values that are allowed to ap-
pear in the list associated with a single key. Reducer size can be selected with
at least two goals in mind.

1. By making the reducer size small, we can force there to be many reducers,
i.e., many different keys according to which the problem input is divided
by the Map tasks. If we also create many Reduce tasks – even one for
each reducer – then there will be a high degree of parallelism, and we can
look forward to a low wall-clock time.

2. We can choose a reducer size sufficiently small that we are certain the
computation associated with a single reducer can be executed entirely in
the main memory of the compute node where its Reduce task is located.
Regardless of the computation done by the reducers, the running time
will be greatly reduced if we can avoid having to move data repeatedly
between main memory and disk.

The second parameter is the replication rate, denoted r. We define r to
be the number of key-value pairs produced by all the Map tasks on all the
inputs, divided by the number of inputs. That is, the replication rate is the
average communication from Map tasks to Reduce tasks (measured by counting
key-value pairs) per input.
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Example 2.11 : Let us consider the one-pass matrix-multiplication algorithm
of Section 2.3.10. Suppose that all the matrices involved are n × n matrices.
Then the replication rate r is equal to n. That fact is easy to see, since for
each element mij , there are n key-value pairs produced; these have all keys of
the form (i, k), for 1 ≤ k ≤ n. Likewise, for each element of the other matrix,
say njk, we produce n key-value pairs, each having one of the keys (i, k), for
1 ≤ i ≤ n. In this case, not only is n the average number of key-value pairs
produced for an input element, but each input produces exactly this number of
pairs.

We also see that q, the required reducer size, is 2n. That is, for each key
(i, k), there are n key-value pairs representing elements mij of the first matrix
and another n key-value pairs derived from the elements njk of the second
matrix. While this pair of values represents only one particular algorithm for
one-pass matrix multiplication, we shall see that it is part of a spectrum of
algorithms, and in fact represents an extreme point, where q is as small as can
be, and r is at its maximum. More generally, there is a tradeoff between r and
q, that can be expressed as qr ≥ 2n2. 2

2.6.2 An Example: Similarity Joins

To see the tradeoff between r and q in a realistic situation, we shall examine a
problem known as similarity join. In this problem, we are given a large set of
elements X and a similarity measure s(x, y) that tells how similar two elements
x and y of set X are. In Chapter 3 we shall learn about the most important
notions of similarity and also learn some tricks that let us find similar pairs
quickly. But here, we shall consider only the raw form of the problem, where
we have to look at each pair of elements of X and determine their similarity by
applying the function s. We assume that s is symmetric, so s(x, y) = s(y, x),
but we assume nothing else about s. The output of the algorithm is those pairs
whose similarity exceeds a given threshold t.

For example, let us suppose we have a collection of one million images, each
of size one megabyte. Thus, the dataset has size one terabyte. We shall not
try to describe the similarity function s, but it might, say, involve giving higher
values when images have roughly the same distribution of colors or when images
have corresponding regions with the same distribution of colors. The goal would
be to discover pairs of images that show the same type of object or scene. This
problem is extremely hard, but classifying by color distribution is generally of
some help toward that goal.

Let us look at how we might do the computation using MapReduce to exploit
the natural parallelism found in this problem. The input is key-value pairs
(i, Pi), where i is an ID for the picture and Pi is the picture itself. We want
to compare each pair of pictures, so let us use one key for each set of two ID’s
{i, j}. There are approximately 5 × 1011 pairs of two ID’s. We want each
key {i, j} to be associated with the two values Pi and Pj , so the input to the
corresponding reducer will be ({i, j}, [Pi, Pj ]). Then, the Reduce function can
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simply apply the similarity function s to the two pictures on its value list, that
is, compute s(Pi, Pj), and decide whether the similarity of the two pictures is
above threshold. The pair would be output if so.

Alas, this algorithm will fail completely. The reducer size is small, since no
list has more than two values, or a total of 2MB of input. Although we don’t
know exactly how the similarity function s operates, we can reasonably expect
that it will not require more than the available main memory. However, the
replication rate is 999,999, since for each picture we generate that number of
key-value pairs, one for each of the other pictures in the dataset. The total
number of bytes communicated from Map tasks to Reduce tasks is 1,000,000
(for the pictures) times 999,999 (for the replication), times 1,000,000 (for the
size of each picture). That’s 1018 bytes, or one exabyte. To communicate this
amount of data over gigabit Ethernet would take 1010 seconds, or about 300
years.9

Fortunately, this algorithm is only the extreme point in a spectrum of possi-
ble algorithms. We can characterize these algorithms by grouping pictures into
g groups, each of 106/g pictures.

The Map Function: Take an input element (i, Pi) and generate g − 1 key-
value pairs. For each, the key is one of the sets {u, v}, where u is the group to
which picture i belongs, and v is one of the other groups. The associated value
is the pair (i, Pi).

The Reduce Function: Consider the key {u, v}. The associated value list
will have the 2 × 106/g elements (j, Pj), where j belongs to either group u or
group v. The Reduce function takes each (i, Pi) and (j, Pj) on this list, where
i and j belong to different groups, and applies the similarity function s(Pi, Pj).
In addition, we need to compare the pictures that belong to the same group,
but we don’t want to do the same comparison at each of the g − 1 reducers
whose key contains a given group number. There are many ways to handle this
problem, but one way is as follows. Compare the members of group u at the
reducer {u, u + 1}, where the “+1” is taken in the end-around sense. That is,
if u = g (i.e., u is the last group), then u + 1 is group 1. Otherwise, u + 1 is the
group whose number is one greater than u.

We can compute the replication rate and reducer size as a function of the
number of groups g. Each input element is turned into g − 1 key-value pairs.
That is, the replication rate is g − 1, or approximately r = g, since we suppose
that the number of groups is still fairly large. The reducer size is 2×106/g, since
that is the number of values on the list for each reducer. Each value is about a
megabyte, so the number of bytes needed to store the input is 2 × 1012/g.

Example 2.12 : If g is 1000, then the input consumes about 2GB. That’s
enough to hold everything in a typical main memory. Moreover, the total

9In a typical cluster, there are many switches connecting subsets of the compute nodes, so

all the data does not need to go across a single gigabit switch. However, the total available

communication is still small enough that it is not feasible to implement this algorithm for the

scale of data we have hypothesized.
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number of bytes communicated is now 106 × 999 × 106, or about 1015 bytes.
While that is still a huge amount of data to communicate, it is 1000 times
less than that of the obvious algorithm. Moreover, there are still about half a
million reducers. Since we are unlikely to have available that many compute
nodes, we can divide all the reducers into a smaller number of Reduce tasks
and still keep all the compute nodes busy; i.e., we can get as much parallelism
as our computing cluster offers us. 2

The computation cost for algorithms in this family is independent of the
number of groups g, as long as the input to each reducer fits in main memory.
The reason is that the bulk of the computation is the application of function s
to the pairs of pictures. No matter what value g has, s is applied to each pair
once and only once. Thus, although the work of algorithms in the family may
be divided among reducers in widely different ways, all members of the family
do the same computation.

2.6.3 A Graph Model for MapReduce Problems

In this section, we begin the study of a technique that will enable us to prove
lower bounds on the replication rate, as a function of reducer size for a number
of problems. Our first step is to introduce a graph model of problems. For each
problem solvable by a MapReduce algorithm there is:

1. A set of inputs.

2. A set of outputs.

3. A many-many relationship between the inputs and outputs, which de-
scribes which inputs are necessary to produce which outputs.

Example 2.13 : Figure 2.9 shows the graph for the similarity-join problem
discussed in Section 2.6.2, if there were four pictures rather than a million. The
inputs are the pictures, and the outputs are the six possible pairs of pictures.
Each output is related to the two inputs that are members of its pair. 2

Example 2.14 : Matrix multiplication presents a more complex graph. If we
multiply n × n matrices M and N to get matrix P , then there are 2n2 inputs,
mij and njk, and there are n2 outputs pik. Each output pik is related to 2n
inputs: mi1, mi2, . . . , min and n1k, n2k, . . . , nnk. Moreover, each input is related
to n outputs. For example, mij is related to pi1, pi2, . . . , pin. Figure 2.10 shows
the input-output relationship for matrix multiplication for the simple case of
2 × 2 matrices, specifically

[

a b
c d

] [

e f
g h

]

=

[

i j
k l

]

2
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Figure 2.9: Input-output relationship for a similarity join

In the problems of Examples 2.13 and 2.14, the inputs and outputs were
clearly all present. However, there are other problems where the inputs and/or
outputs may not all be present in any instance of the problem. An example
of such a problem is the natural join of R(A, B) and S(B, C) discussed in
Section 2.3.7. We assume the attributes A, B, and C each have a finite domain,
so there are only a finite number of possible inputs and outputs. The inputs are
all possible R-tuples, those consisting of a value from the domain of A paired
with a value from the domain of B, and all possible S-tuples – pairs from the
domains of B and C. The outputs are all possible triples, with components from
the domains of A, B, and C in that order. The output (a, b, c) is connected to
two inputs, namely R(a, b) and S(b, c).

But in an instance of the join computation, only some of the possible inputs
will be present, and therefore only some of the possible outputs will be produced.
That fact does not influence the graph for the problem. We still need to know
how every possible output relates to inputs, whether or not that output is
produced in a given instance.

2.6.4 Mapping Schemas

Now that we see how to represent problems addressable by MapReduce as
graphs, we can define the requirements for a MapReduce algorithm to solve
a given problem. Each such algorithm must have a mapping schema, which
expresses how outputs are produced by the various reducers used by the algo-
rithm. That is, a mapping schema for a given problem with a given reducer
size q is an assignment of inputs to one or more reducers, such that:

1. No reducer is assigned more than q inputs.



2.6. COMPLEXITY THEORY FOR MAPREDUCE 59

a

b

c

d

e

f

g

h

i

j

k

l

Figure 2.10: Input-output relationship for matrix multiplication

2. For every output of the problem, there is at least one reducer that is
assigned all the inputs that are related to that output. We say this reducer
covers the output.

It can be argued that the existence of a mapping schema for any reducer size
is what distinguishes problems that can be solved by a single MapReduce job
from those that cannot.

Example 2.15 : Let us reconsider the “grouping” strategy we discussed in
connection with the similarity join in Section 2.6.2. To generalize the problem,
suppose the input is p pictures, which we place in g equal-sized groups of p/g
inputs each. The number of outputs is

(

p
2

)

, or approximately p2/2 outputs. A
reducer will get the inputs from two groups – that is 2p/g inputs – so the reducer
size we need is q = 2p/g. Each picture is sent to the reducers corresponding to
the pairs consisting of its group and any of the g − 1 other groups. Thus, the
replication rate is g − 1, or approximately g. If we replace g by the replication
rate r in q = 2p/g, we conclude that r = 2p/q. That is, the replication rate
is inversely proportional to the reducer size. That relationship is common; the
smaller the reducer size, the larger the replication rate, and therefore the higher
the communication.

This family of algorithms is described by a family of mapping schemas, one
for each possible q. In the mapping schema for q = 2p/g, there are

(

g
2

)

, or
approximately g2/2 reducers. Each reducer corresponds to a pair of groups,
and an input P is assigned to all the reducers whose pair includes the group of
P . Thus, no reducer is assigned more than 2p/g inputs; in fact each reducer
is assigned exactly that number. Moreover, every output is covered by some
reducer. Specifically, if the output is a pair from two different groups u and v,
then this output is covered by the reducer for the pair of groups {u, v}. If the
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output corresponds to inputs from only one group u, then the output is covered
by several reducers – those corresponding to the set of groups {u, v} for any
v 6= u. Note that the algorithm we described has only one of these reducers
computing the output, but any of them could compute it. 2

The fact that an output depends on a certain input means that when that
input is processed at the Map task, there will be at least one key-value pair
generated to be used when computing that output. The value might not be
exactly the input (as was the case in Example 2.15), but it is derived from
that input. What is important is that for every related input and output there
is a unique key-value pair that must be communicated. Note that there is
technically never a need for more than one key-value pair for a given input and
output, because the input could be transmitted to the reducer as itself, and
whatever transformations on the input were applied by the Map function could
instead be applied by the Reduce function at the reducer for that output.

2.6.5 When Not All Inputs Are Present

Example 2.15 describes a problem where we know every possible input is pre-
sent, because we can define the input set to be those pictures that actually
exist in the dataset. However, as discussed at the end of Section 2.6.3, there
are problems like computing the join, where the graph of inputs and outputs
describes inputs that might exist, and outputs that are only made when at least
one of the inputs exists in the dataset. In fact, for the join, both inputs related
to an output must exist if we are to make that output.

An algorithm for a problem where outputs can be missing still needs a
mapping schema. The justification is that all inputs, or any subset of them,
might be present, so an algorithm without a mapping schema would not be
able to produce every possible output if all the inputs related to that output
happened to be present, and yet no reducer covered that output.

The only way the absence of some inputs makes a difference is that we
may wish to rethink the desired value of the reducer size q when we select an
algorithm from the family of possible algorithms. Especially, if the value of q
we select is that number such that we can be sure the input will just fit in main
memory, then we may wish to increase q to take into account that some fraction
of the inputs are not really there.

Example 2.16 : Suppose that we know we can execute the Reduce function
in main memory on a key and its associated list of q values. However, we also
know that only 5% of the possible inputs are really present in the data set.
Then a mapping schema for reducer size q will really send about q/20 of the
inputs that exist to each reducer. Put another way, we could use the algorithm
for reducer size 20q and expect that an average of q inputs will actually appear
on the list for each reducer. We can thus choose 20q as the reducer size, or since
there will be some randomness in the number of inputs actually appearing at
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each reducer, we might wish to pick a slightly smaller value of reducer size, such
as 18q. 2

2.6.6 Lower Bounds on Replication Rate

The family of similarity-join algorithms described in Example 2.15 lets us trade
off communication against the reducer size, and through reducer size to trade
communication against parallelism or against the ability to execute the Reduce
function in main memory. How do we know we are getting the best possible
tradeoff? We can only know we have the minimum possible communication if
we can prove a matching lower bound. Using existence of a mapping schema as
the starting point, we can often prove such a lower bound. Here is an outline
of the technique.

1. Prove an upper bound on how many outputs a reducer with q inputs can
cover. Call this bound g(q). This step can be difficult, but for examples
like similarity join, it is actually quite simple.

2. Determine the total number of outputs produced by the problem.

3. Suppose that there are k reducers, and the ith reducer has qi < q inputs.
Observe that

∑k
i=1 g(qi) must be no less than the number of outputs

computed in step (2).

4. Manipulate the inequality from (3) to get a lower bound on
∑k

i=1 qi.
Often, the trick used at this step is to replace some factors of qi by their
upper bound q, but leave a single factor of qi in the term for i.

5. Since
∑k

i=1 qi is the total communication from Map tasks to Reduce tasks,
divide the lower bound from (4) on this quantity by the number of inputs.
The result is a lower bound on the replication rate.

Example 2.17 : This sequence of steps may seem mysterious, but let us con-
sider the similarity join as an example that we hope will make things clear.
Recall that in Example 2.15 we gave an upper bound on the replication rate
r of r ≤ 2p/q, where p was the number of inputs and q was the reducer size.
We shall show a lower bound on r that is half that amount, which implies that,
although improvements to the algorithm might be possible, any reduction in
communication for a given reducer size will be by a factor of 2 at most.

For step (1), observe that if a reducer gets q inputs, it cannot cover more
than

(

q
2

)

, or approximately q2/2 outputs. For step (2), we know there are a

total of
(

p
2

)

, or approximately p2/2 outputs that each must be covered. The
inequality constructed at step (3) is thus

k
∑

i=1

q2
i /2 ≥ p2/2
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or, multiplying both sides by 2,

k
∑

i=1

q2
i ≥ p2 (2.1)

Now, we must do the manipulation of step (4). Following the hint, we note
that there are two factors of qi in each term on the left of Equation (2.1), so
we replace one factor by q and leave the other as qi. Since q ≥ qi, we can only
increase the left side by doing so, and thus the inequality continues to hold:

q

k
∑

i=1

qi ≥ p2

or, dividing by q:

k
∑

i=1

qi ≥ p2/q (2.2)

The final step, which is step (5), is to divide both sides of Equation 2.2 by

p, the number of inputs. As a result, the left side, which is (
∑k

i=1 qi)/p is equal
to the replication rate, and the right side becomes p/q. That is, we have proved
the lower bound on r:

r ≥ p/q

As claimed, this shows that the family of algorithms from Example 2.15 all have
a replication rate that is at most twice the lowest possible replication rate. 2

2.6.7 Case Study: Matrix Multiplication

In this section we shall apply the lower-bound technique to one-pass matrix-
multiplication algorithms. We saw one such algorithm in Section 2.3.10, but
that is only an extreme case of a family of possible algorithms. In particular,
for that algorithm, a reducer corresponds to a single element of the output
matrix. Just as we grouped inputs in the similarity-join problem to reduce the
communication at the expense of a larger reducer size, we can group rows and
columns of the two input matrices into bands. Each pair consisting of a band of
rows of the first matrix and a band of columns of the second matrix is used by
one reducer to produce a square of elements of the output matrix. An example
is suggested by Fig. 2.11.

In more detail, suppose we want to compute MN = P , and all three matrices
are n × n. Group the rows of M into g bands of n/g rows each, and group the
columns of N into g bands of n/g columns each. This grouping is as suggested
by Fig. 2.11. Keys correspond to two groups (bands), one from M and one
from N .

The Map Function: For each element of M , the Map function generates g
key-value pairs. The value in each case is the element itself, together with its
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Figure 2.11: Dividing matrices into bands to reduce communication

row and column number so it can be identified by the Reduce function. The
key is the group to which the element belongs, paired with any of the groups
of the matrix N . Similarly, for each element of N , the Map function generates
g key-value pairs. The key is the group of that element paired with any of the
groups of M , and the value is the element itself plus its row and column.

The Reduce Function: The reducer corresponding to the key (i, j), where i
is a group of M and j is a group of N , gets a value list consisting of all the
elements in the ith band of M and the jth band of N . It thus has all the
values it needs to compute the elements of P whose row is one of those rows
comprising the ith band of M and whose column is one of those comprising the
jth band of N . For instance, Fig. 2.11 suggests the third group of M and the
fourth group of N , combining to compute a square of P at the reducer (3, 4).

Each reducer gets n(n/g) elements from each of the two matrices, so q =
2n2/g. The replication rate is g, since each element of each matrix is sent to
g reducers. That is, r = g. Combining r = g with q = 2n2/g we can conclude
that r = 2n2/q. That is, just as for similarity join, the replication rate varies
inversely with the reducer size.

It turns out that this upper bound on replication rate is also a lower bound.
That is, we cannot do better than the family of algorithms we described above
in a single round of MapReduce. Interestingly, we shall see that we can get a
lower total communication for the same reducer size, if we use two passes of
MapReduce as we discussed in Section 2.3.9. We shall not give the complete
proof of the lower bound, but will suggest the important elements.

For step (1) we need to get an upper bound on how many outputs a reducer
of size q can cover. First, notice that if a reducer gets some of the elements in
a row of M , but not all of them, then the elements of that row are useless; the
reducer cannot produce any output in that row of P . Similarly, if a reducer
receives some but not all of a column of N , these inputs are also useless. Thus,
we may assume that the best mapping schema will send to each reducer some
number of full rows of M and some number of full columns of N . This reducer
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is then capable of producing output element pik if and only if it has received
the entire ith row of M and the entire kth column of N . The remainder of the
argument for step (1) is to prove that the largest number of outputs are covered
when the reducer receives the same number of rows as columns. We leave this
part as an exercise.

However, assuming a reducer receives k rows of M and k columns of N ,
then q = 2nk, and k2 outputs are covered. That is, g(q), the maximum number
of outputs covered by a reducer that receives q inputs, is q2/4n2.

For step (2), we know the number of outputs is n2. In step (3) we observe
that if there are k reducers, with the ith reducer receiving qi ≤ q inputs, then

k
∑

i=1

q2
i /4n2 ≥ n2

or
k

∑

i=1

q2
i ≥ 4n4

From this inequality, you can derive

r ≥ 2n2/q

We leave the algebraic manipulation, which is similar to that in Example 2.17,
as an exercise.

Now, let us consider the generalization of the two-pass matrix-multiplication
algorithm that we described in Section 2.3.9. First, notice that we could have
designed the first pass to use one reducer for each triple (i, j, k). This reducer
would get only the two elements mij and njk. We can generalize this idea to
use reducers that get larger sets of elements from each matrix; these sets of
elements form squares within their respective matrices. The idea is suggested
by Fig. 2.12. We may divide the rows and columns of both input matrices M
and N into g groups of n/g rows or columns each. The intersections of the
groups partition each matrix into g2 squares of n2/g2 elements each.

The square of M corresponding to set of rows I and set of columns J com-
bines with the square of N corresponding to set of rows J and set of columns
K. These two squares compute some of the terms that are needed to produce
the square of the output matrix P that has set of rows I and set of columns K.
However, these two squares do not compute the full value of these elements of
P ; rather they produce a contribution to the sum. Other pairs of squares, one
from M and one from N , contribute to the same square of P . These contribu-
tions are suggested in Fig. 2.12. There, we see how all the squares of M with
a fixed value for set of rows I pair with all the squares of N that have a fixed
value for the set of columns K by letting the set J vary.

So in the first pass, we compute the products of the square (I, J) of M with
the square (J, K) of N , for all I, J , and K. Then, in the second pass, for each
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Figure 2.12: Partitioning matrices into squares for a two-pass MapReduce al-
gorithm

I and K we sum the products over all possible sets J . In more detail, the first
MapReduce job does the following.

The Map Function: The keys are triples of sets of rows and/or column num-
bers (I, J, K). Suppose the element mij belongs to group of rows I and group
of columns J . Then from mij we generate g key-value pairs with value equal to
mij , together with its row and column numbers, i and j, to identify the matrix
element. There is one key-value pair for each key (I, J, K), where K can be any
of the g groups of columns of N . Similarly, from element njk of N , if j belongs
to group J and k to group K, the Map function generates g key-value pairs
with value consisting of njk, j, and k, and with keys (I, J, K) for any group I.

The Reduce Function: The reducer corresponding to (I, J, K) receives as
input all the elements mij where i is in I and j is in J , and it also receives all
the elements njk, where j is in J and k is in K. It computes

xiJk =
∑

j in J

mijnjk

for all i in I and k in K.

Notice that the replication rate for the first MapReduce job is g, and the to-
tal communication is therefore 2gn2. Also notice that each reducer gets 2n2/g2

inputs, so q = 2n2/g2. Equivalently, g = n
√

2/q. Thus, the total communica-

tion 2gn2 can be written in terms of q as 2
√

2n3/
√

q.
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The second MapReduce job is simple; it sums up the xiJk’s over all sets J .

The Map Function: We assume that the Map tasks execute at whatever
compute nodes executed the Reduce tasks of the previous job. Thus, no com-
munication is needed between the jobs. The Map function takes as input one
element xiJk, which we assume the previous reducers have left labeled with i
and k so we know to what element of matrix P this term contributes. One
key-value pair is generated. The key is (i, k) and the value is xiJk.

The Reduce Function: The Reduce function simply sums the values associ-
ated with key (i, k) to compute the output element Pik.

The communication between the Map and Reduce tasks of the second job is
gn2, since there are n possible values of i, n possible values of k, and g possible
values of the set J , and each xiJk is communicated only once. If we recall from
our analysis of the first MapReduce job that g = n

√

2/q, we can write the

communication for the second job as n2g =
√

2n3/
√

q. This amount is exactly
half the communication for the first job, so the total communication for the
two-pass algorithm is 3

√
2n3/

√
q. Although we shall not examine this point

here, it turns out that we can do slightly better if we divide the matrices M
and N not into squares but into rectangles that are twice as long on one side
as on the other. In that case, we get the slightly smaller constant 4 in place
of 3

√
2 = 4.24, and we get a two-pass algorithm with communication equal to

4n3/
√

q.
Now, recall that the communication cost we computed for the one-pass

algorithm is 4n4/q. We may as well assume q is less than n2, or else we can
just use a serial algorithm at one compute node and not use MapReduce at all.
Thus, n3/

√
q is smaller than n4/q, and if q is close to its minimum possible

value of 2n,10 then the two-pass algorithm beats the one-pass algorithm by a
factor of O(

√
n) in communication. Moreover, we can expect the difference

in communication to be the significant cost difference. Both algorithms do
the same O(n3) arithmetic operations. The two-pass method naturally has
more overhead managing tasks than does the one-job method. On the other
hand, the second pass of the two-pass algorithm applies a Reduce function
that is associative and commutative. Thus, it might be possible to save some
communication cost by using a combiner on that pass.

2.6.8 Exercises for Section 2.6

Exercise 2.6.1 : Describe the graphs that model the following problems.

(a) The multiplication of an n × n matrix by a vector of length n.

(b) The natural join of R(A, B) and S(B, C), where A, B, and C have do-
mains of sizes a, b, and c, respectively.

10If q is less than 2n, then a reducer cannot get even one row and one column, and therefore

cannot compute any outputs at all.
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(c) The grouping and aggregation on the relation R(A, B), where A is the
grouping attribute and B is aggregated by the MAX operation. Assume
A and B have domains of size a and b, respectively.

! Exercise 2.6.2 : Provide the details of the proof that a one-pass matrix-
multiplication algorithm requires replication rate at least r ≥ 2n2/q, including:

(a) The proof that, for a fixed reducer size, the maximum number of outputs
are covered by a reducer when that reducer receives an equal number of
rows of M and columns of N .

(b) The algebraic manipulation needed, starting with
∑k

i=1 q2
i ≥ 4n4.

!! Exercise 2.6.3 : Suppose our inputs are bit strings of length b, and the outputs
correspond to pairs of strings at Hamming distance 1.11

(a) Prove that a reducer of size q can cover at most (q/2) log2 q outputs.

(b) Use part (a) to show the lower bound on replication rate: r ≥ b/ log2 q.

(c) Show that there are algorithms with replication rate as given by part (b)
for the cases q = 2, q = 2b, and q = 2b/2.

2.7 Summary of Chapter 2

✦ Cluster Computing: A common architecture for very large-scale applica-
tions is a cluster of compute nodes (processor chip, main memory, and
disk). Compute nodes are mounted in racks, and the nodes on a rack are
connected, typically by gigabit Ethernet. Racks are also connected by a
high-speed network or switch.

✦ Distributed File Systems: An architecture for very large-scale file sys-
tems has developed recently. Files are composed of chunks of about 64
megabytes, and each chunk is replicated several times, on different com-
pute nodes or racks.

✦ MapReduce: This programming system allows one to exploit parallelism
inherent in cluster computing, and manages the hardware failures that
can occur during a long computation on many nodes. Many Map tasks
and many Reduce tasks are managed by a Master process. Tasks on a
failed compute node are rerun by the Master.

✦ The Map Function: This function is written by the user. It takes a
collection of input objects and turns each into zero or more key-value
pairs. Keys are not necessarily unique.

11Bit strings have Hamming distance 1 if they differ in exactly one bit position. You may

look ahead to Section 3.5.6 for the general definition.
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✦ The Reduce Function: A MapReduce programming system sorts all the
key-value pairs produced by all the Map tasks, forms all the values asso-
ciated with a given key into a list and distributes key-list pairs to Reduce
tasks. Each Reduce task combines the elements on each list, by applying
the function written by the user. The results produced by all the Reduce
tasks form the output of the MapReduce process.

✦ Reducers : It is often convenient to refer to the application of the Reduce
function to a single key and its associated value list as a “reducer.”

✦ Hadoop: This programming system is an open-source implementation of a
distributed file system (HDFS, the Hadoop Distributed File System) and
MapReduce (Hadoop itself). It is available through the Apache Founda-
tion.

✦ Managing Compute-Node Failures: MapReduce systems support restart
of tasks that fail because their compute node, or the rack containing
that node, fail. Because Map and Reduce tasks deliver their output only
after they finish, it is possible to restart a failed task without concern for
possible repetition of the effects of that task. It is necessary to restart the
entire job only if the node at which the Master executes fails.

✦ Applications of MapReduce: While not all parallel algorithms are suitable
for implementation in the MapReduce framework, there are simple im-
plementations of matrix-vector and matrix-matrix multiplication. Also,
the principal operators of relational algebra are easily implemented in
MapReduce.

✦ Workflow Systems : MapReduce has been generalized to systems that sup-
port any acyclic collection of functions, each of which can be instantiated
by any number of tasks, each responsible for executing that function on
a portion of the data.

✦ Recursive Workflows : When implementing a recursive collection of func-
tions, it is not always possible to preserve the ability to restart any failed
task, because recursive tasks may have produced output that was con-
sumed by another task before the failure. A number of schemes for check-
pointing parts of the computation to allow restart of single tasks, or restart
all tasks from a recent point, have been proposed.

✦ Communication-Cost : Many applications of MapReduce or similar sys-
tems do very simple things for each task. Then, the dominant cost is
usually the cost of transporting data from where it is created to where
it is used. In these cases, efficiency of a MapReduce algorithm can be
estimated by calculating the sum of the sizes of the inputs to all the
tasks.
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✦ Multiway Joins : It is sometimes more efficient to replicate tuples of the
relations involved in a join and have the join of three or more relations
computed as a single MapReduce job. The technique of Lagrangean mul-
tipliers can be used to optimize the degree of replication for each of the
participating relations.

✦ Star Joins : Analytic queries often involve a very large fact table joined
with smaller dimension tables. These joins can always be done efficiently
by the multiway-join technique. An alternative is to distribute the fact
table and replicate the dimension tables permanently, using the same
strategy as would be used if we were taking the multiway join of the fact
table and every dimension table.

✦ Replication Rate and Reducer Size: It is often convenient to measure
communication by the replication rate, which is the communication per
input. Also, the reducer size is the maximum number of inputs associated
with any reducer. For many problems, it is possible to derive a lower
bound on replication rate as a function of the reducer size.

✦ Representing Problems as Graphs : It is possible to represent many prob-
lems that are amenable to MapReduce computation by a graph in which
nodes represent inputs and outputs. An output is connected to all the
inputs that are needed to compute that output.

✦ Mapping Schemas : Given the graph of a problem, and given a reducer size,
a mapping schema is an assignment of the inputs to one or more reducers
so that no reducer is assigned more inputs than the reducer size permits,
and yet for every output there is some reducer that gets all the inputs
needed to compute that output. The requirement that there be a mapping
schema for any MapReduce algorithm is a good expression of what makes
MapReduce algorithms different from general parallel computations.

✦ Matrix Multiplication by MapReduce: There is a family of one-pass Map-
Reduce algorithms that performs multiplication of n × n matrices with
the minimum possible replication rate r = 2n2/q, where q is the reducer
size. On the other hand, a two-pass MapReduce algorithm for the same
problem with the same reducer size can use up to a factor of n less com-
munication.

2.8 References for Chapter 2

GFS, the Google File System, was described in [10]. The paper on Google’s
MapReduce is [8]. Information about Hadoop and HDFS can be found at [11].
More detail on relations and relational algebra can be found in [16].

Clustera is covered in [9]. Hyracks (previously called Hyrax) is from [4].
The Dryad system [13] has similar capabilities, but requires user creation of
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parallel tasks. That responsibility was automated through the introduction of
DryadLINQ [17]. For a discussion of cluster implementation of recursion, see
[1]. Pregel is from [14].

A different approach to recursion was taken in Haloop [5]. There, recursion
is seen as an iteration, with the output of one round being input to the next
round. Efficiency is obtained by managing the location of the intermediate data
and the tasks that implement each round.

There are a number of other systems built on a distributed file system and/or
MapReduce, which have not been covered here, but may be worth knowing
about. [6] describes BigTable, a Google implementation of an object store of
very large size. A somewhat different direction was taken at Yahoo! with Pnuts
[7]. The latter supports a limited form of transaction processing, for example.

PIG [15] is an implementation of relational algebra on top of Hadoop. Sim-
ilarly, Hive [12] implements a restricted form of SQL on top of Hadoop.

The communication-cost model for MapReduce algorithms and the optimal
implementations of multiway joins is from [3]. The material on replication rate,
reducer size, and their relationship is from [2]. Solutions to Exercises 2.6.2 and
2.6.3 can be found there.
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