Using SQL for predictions and recommendations

Lecture 04.03

by Marina Barsky

Look-alike model for prediction

What nearest neighbors can tell about you

To predict salary level for person X :

- Find k people most similar to X by their demographic characteristics
- Return average salary for these nearest neighbors

Simple distance function for numeric attributes: Euclidean distance

Distance between categorical attributes

- $D(A, B)=0$
- $D(B, C)=1$
- $D(A, C)=1$

Strawberry

Finding 35 nearest neighbors for person:
age: 55
working hours per week: 48
educations numeric: 17(bachelor)
maritalstatus: married

SELECT average(salary) FROM
(SELECT salary,

```
    ((age - 55)*(age - 55)
    + (workinhoursperweek - 48)*(workinhoursperweek - 48)
    +(educationnumeric - 17)*(educationnumeric - 17)
    +(CASE
    WHEN maritalstatus='Married-civ-spouse' THEN 0 ELSE 1
    END)) distance_column
```

FROM person
ORDER BY 2
LIMIT 35) neighbors;

K-NN prediction

K-NN prediction

K-NN recommender (collaborative filtering)

Recommended items

Automated recommender system (collaborative filtering)
I. Build profile for active user
II. Compare active profile with the profiles of other customers, locate similar "neighbors"
III. Find and combine ratings of a peer group selected by similar tastes for the items that active user did not rank yet
IV. Rank predictions and output top-scored ones

I. Active user profile

Creating customer profile

Example: music recommender

You:
\{Lady Gaga, Katy Perry, Justin Bieber, Maroon 5\}

1. April:
\{The Beatles, Lady Antebellum\}
2. Ben:
\{Lady Gaga, Adele, Kelly Clarkson, The Dixie Chicks, Lady Antebellum\}
3. Cory:
\{Kelly Clarkson, Lady Gaga, Katy Perry, Justin Bieber, Lady Antebellum\}
4. Dave:
\{The Beatles, Maroon 5, Lady Antebellum \}
5. Edgar:
\{Adele, Maroon 5, Katy Perry, Bruno Mars\}

II. Finding users with similar tastes

	Adele	The Beatles	Justin Bieber	The Dixie Chicks	Kelly Clarkson	Lady Gaga Lady Antebel lum	Maroon 5	Bruno Mars	Katy Perry	
April		Yes					Yes			
Ben	Yes			Yes	Yes	Yes	Yes			
Cory			Yes		Yes	Yes	Yes			Yes
Dave		Yes					Yes	Yes		
Edgar	Yes							Yes	Yes	Yes

You

	Yes			Yes		Yes	

Similarity measures for asymmetric binary data Simple matching coefficient: number of matches / total attributes
Jaccard index:
number of matches/total not-both-null attributes

II. Finding users with similar tastes (Jaccard index)

	Adele	The Beatles	Justin Bieber	The Dixie Chicks	Kelly Clarkson	Lady Gaga	Lady Antebel lum	Maroon 5	Bruno Mars	Katy Perry
April		Yes					Yes			
Ben	Yes			Yes	Yes	Yes	Yes			
Cory			Yes		Yes	Yes	Yes			Yes
Dave		Yes					Yes	Yes		
Edgar	Yes							Yes	Yes	Yes

You
Yes

You vs Ben: 1/8
You vs. Cory: 3/6
You vs. Dave: 1/6
You vs. Edgar: 2/6

Your peer group:
Cory: similarity 0.50
Dave: similarity 0.17
Edgar: similarity 0.33

III. Combine ratings for new items (weighted voting)

	Adele	The Beatles	Justin Bieber	The Dixie Chicks	Kelly Clarkson	Lady Gaga Lady Antebel lum	Maroon 5	Bruno Mars	Katy Perry	
April		Yes					Yes			
Ben	Yes			Yes	Yes	Yes	Yes			
Cory			Yes		Yes	Yes	Yes			Yes
Dave		Yes					Yes	Yes		
Edgar	Yes							Yes	Yes	Yes

You

	Yes
our peer group:	

Cory: similarity 0.50
Dave: similarity 0.17
Edgar: similarity 0.33

Predicted likes for new items:

Adele: 1 like *0.33 = 0.33
The Beatles: 1 like * $0.17=0.17$
Kelly Clarkson: 1 like * $0.50=0.50$
Lady Antebellum: 1 like *0.50 + 1 like * $0.17=0.67$
Bruno Mars: 1 like * $0.33=0.33$

IV. Output top-ranked

	Adele	The Beatles	Justin Bieber	The Dixie Chicks	Kelly Clarkson	Lady Gaga Lady Antebel lum	Maroon 5	Bruno Mars	Katy Perry	
April		Yes					Yes			
Ben	Yes			Yes	Yes	Yes	Yes			
Cory			Yes		Yes	Yes	Yes			Yes
Dave		Yes						Yes		
Edgar	Yes							Yes	Yes	Yes

You

Yes

Cory: similarity 0.50
Dave: similarity 0.17
Edgar: similarity 0.33

Top ranked:

Lady Antebellum: 0.67
Kelly Clarkson: 0.50
These are your recommendations!

Possible project: Course recommender

- Task:
- Develop course recommender system using databases and SQL queries
- Challenges:
- Distance metrics (who are most similar users)
- How to build a student profile?
- What are the best courses to recommend:
- Courses where subject is most interesting?
- Courses where grades are the highest?
- Courses by instructor?

