
Concurrent DB operations:
short version

By Marina Barsky

CMPT 321
FALL 2017

Serializable schedules

• Serial Schedule = All actions for each transaction are
consecutive.

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B); …

• Serializable Schedule: A schedule whose “effect” is equivalent
to that of some serial schedule.

There is a conflict if one of these two conditions hold:

1. A read and a write of the same X, or

2. Two writes of the same X

• Such actions conflict in general and may not be swapped in
order.

• All other events (reads/writes) of 2 different transactions
may be swapped without changing the effect of the
schedule.

Conflicts: summary

A schedule is conflict-serializable if it can be converted into
a serial schedule by a series of non-conflicting swaps of
adjacent elements

Example 1

Transaction 1 Transaction 2

r(A) A-100

w(A)

r(A) A*1.01

w(A)

r(B) B+100

w(B)

r(B) B*1.01

w(B)

Example 1: swapping non-
conflicting actions

Transaction 1 Transaction 2

r(A)

w(A)

r(A)

w(A)

r(B)

w(B)

r(B)

w(B)

Example 1: End up with a serial
schedule

Transaction 1 Transaction 2

r(A)

w(A)

r(B)

w(B)

r(A)

w(A)

r(B)

w(B)

Example 1 conclusion: can use
original schedule

Transaction 1 Transaction 2

r(A) A-100

w(A)

r(A) A*1.01

w(A)

r(B) B+100

w(B)

r(B) B*1.01

w(B)

Example 2

Transaction 1 Transaction 2

r(A) A-100

w(A)

r(A) A*1.01

w(A)

r(B) B*1.01

w(B)

r(B) B+100

w(B)

Example 2: cannot swap
conflicting actions

Transaction 1 Transaction 2

r(A)

w(A)

r(A)

w(A)

r(B)

w(B)

r(B)

w(B)

Example 2 conclusion: this
schedule should be rejected

Transaction 1 Transaction 2

r(A) A-100

w(A)

r(A) A*1.01

w(A)

r(B) B*1.01

w(B)

r(B) B+100

w(B)

Testing schedule for serializability

• Non-swappable pairs of actions represent potential conflicts
between transactions.

• The existence of non-swappable actions enforces an
ordering on the transactions that include these actions.

We can represent this order by a precedence graph
• Nodes: transactions {T1,…,Tk}
• Arcs: There is a directed edge from Ti to Tj if they have

conflicting access to the same database element X and Ti is
first:

written Ti <S Tj.

Precedence graphs: example 1

Note the following:

▪w1(B) <S r2(B)

▪r2(A) <S w3(A)

➢These are conflicts since
they contain a read/write on
the same element

➢They cannot be swapped.
Therefore T1 < T2 < T3

1 2 3

Conflict-serializable

Schedule accepted

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

Precedence graphs: example 2

Note the following:

▪r1(B) <S w2(B)

▪w2(A) <S w3(A)

▪r2(B) <S w1(B)

➢Here, we have

T1 < T2 < T3,

but we also have

T2 < T1

1 2 3

Not conflict-serializable

Schedule rejected

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Enforcing serializability by locks
• To prevent non-serializable schedules to be submitted (which

will result in rejecting all transactions) we can enforce
serializability by locks

• Before reading or writing an element X, a transaction Ti requests
a lock on X from the scheduler

• The scheduler can either grant the lock to Ti or make Ti wait for
the lock

• If granted, Ti should eventually unlock (release) the lock on X.

• Notations:

Li(X) = “transaction Ti requests a lock on X”

ui(X) (or uLi(X))= “Ti unlocks/releases the lock on X”

• T1 adds 100 to both A and B

• T2 doubles both A and B

Legal schedule
with locks

T1 T2 A B

25 25

L1(A); r1(A)

A = A + 100

w1(A);u1(A) 125

L2(A);r2(A)

A = A * 2

w2(A);u2(A) 250

L2(B);r2(B)

B = B * 2

w2(B);u2(B) 50

L1(B);r1(B)

B = B + 100

w1(B);u1(B) 150

T1 unlocks
A so T2 is

free to
lock it

• T1 adds 100 to both A and B

• T2 doubles both A and B

• Expected result: A=B, and
should be 250 for both by
the end!

Using locks does not
necessarily make

schedule serializable!

T1 T2 A B

25 25

L1(A); r1(A)

A = A + 100

w1(A);u1(A) 125

L2(A);r2(A)

A = A * 2

w2(A);u2(A) 250

L2(B);r2(B)

B = B * 2

w2(B);u2(B) 50

L1(B);r1(B)

B = B + 100

w1(B);u1(B) 150

Two-Phase Locking
T1 T2 A B

25 25

L1(A); r1(A)

A = A + 100

w1(A); L1(B); u1(A) 125

L2(A);r2(A)

A = A * 2

w2(A) 250

L2(B) Denied

r1(B)

B = B + 100 125

w1(B);u1(B)

L2(B);u2(A);r2(B)

B = B * 2

w2(B);u2(B) 250

There is a simple
condition, which
guarantees conflict-
serializability:

In every transaction, all
lock requests (phase 1)
precede all unlock
requests (phase 2).

Simple locks are too restrictive

• While simple locks + 2PL guarantee conflict-serializability,

they do not allow two readers of DB element X at the
same time.

• But having multiple readers is not a problem for conflict-
serializability (since read actions are non-conflicting)!

Solution: Two types of locks:

• Shared lock sLi(X)

• Exclusive lock xLi(X)

Deadlocks (on a single element)
Example:T1 and T2 each reads X and later writes X.

“When two trains approach each other at a crossing,
both shall come to a full stop and neither shall start
up again until the other has gone.”

T1 T2

sL1(X)

sL2(X)

xL1(X) denied

xL2(X) denied

Problem: when we allow 2 types of
locks, it is easy to get into a

deadlock situation.

Possible solution: Update Locks

• Only an update lock (not shared lock) can be upgraded to
exclusive lock (if there are no shared locks anymore).

• A transaction that plans to write some element X, asks initially
for an update lock on X, waits until all shared locks (if any) are
released, and then asks for an exclusive lock on X.

• No new locks on X by other transactions are permitted while X
is in an update lock mode

Notation: Update lock udLi(X)

Schedule with update locks:
example

T1 T2 T3
sL(A); r(A)

udL(A); r(A)
sL(A) Denied

xL(A) Denied
u(A)

xL(A); w(A)
u(A)

sL(A); r(A)
u(A)

(No) Deadlock Example
T1 and T2 each read X and later write X.

Deadlock when using sL

and xL locks only.

Fine when using
update locks.

T1 T2

sL1(X);

sL2(X);

xL1(X); denied

xL2(X); denied

T1 T2

udl1(X); r(X);

udL2(X); denied

xL1(X); w(X); u(X);

udl2(X); r2(X);
xl2(X); w2(X); u2(X)

Benefits of Update Locks
T1 T2 T3 T4 T5 T6 T7 T8 T9
sl(A);r(A)

sl(A);r(A)
sl(A);r(A)

sl(A);r(A)
udl(A);r(A)

sl(A);denied
sl(A);denied

sl(A);denied
sl(A);denied

u(A)
u(A)

u(A)
u(A)

xl(A);w(A)
u(A)

s(A);r(A)
s(A);r(A)

s(A);r(A)
s(A);r(A)

sl – shared lock
udl – update lock
xl – exclusive lock
u - unlock

Note how transactions T1-T4 were able to read A until T5 declared its
intention to write with update lock and waited for them to release
shared lock to get an exclusive lock on A

