
Control of transactions
in SQL

Lecture 05.05
By Marina Barsky

CMPT 321
FALL 2017

Not all transactions are created
equal
• Full locking of database objects can prevent other

transactions from completing and make users wait for a long
time

• Depending on the nature and meaning of a transaction,
programmer can choose to sacrifice some consistency in
order to increase overall efficiency

• Examples:
• Getting available seats in the web app for flight selection
• Getting total number of your followers on twitter

• Here getting an inconsistent snapshot of data is better than
locking all the affected objects

Transaction tuning in SQL

Gives control over the locking overhead

• Access mode:

• READ ONLY

• READ WRITE

• Isolation level (to which extent transaction is exposed to
actions of other transactions):

• SERIALIZABLE (Default)

• REPEATABLE READ

• READ COMMITED

• READ UNCOMMITED

Levels of increasing isolation

Level Reading

Uncommitted Data

(Dirty Read)

Unrepeatable

Reads (different

values in the same

rows)

Phantom (different

collections of

rows)

READ

UNCOMMITED

Maybe Maybe Maybe

READ

COMMITTED

No Maybe Maybe

REPEATABLE

READ

No No Maybe

SERIALIZABLE No No No

Transaction Isolation Levels

SET TRANSACTION ISOLATION LEVEL X

Where X can be

SERIALIZABLE (Default)

REPEATABLE READ

READ COMMITED

READ UNCOMMITED

With a scheduler based on locks:

• A SERIALIZABLE transaction obtains locks on all the required objects, including
locks on sets (e.g. table) of objects and holds them until the end.

• A REPEATABLE READ transaction sets the same locks as a SERIALIZABLE
transaction, except that it doesn’t lock sets of objects, but only individual
objects.

• A READ COMMITED transaction T obtains exclusive locks only before writing
objects and keeps them until the end.

That is to ensure that the transaction that last modified the values is
complete.

• T reads only the changes made by committed transactions.

• No value written by T is changed by any other transaction until T is
completed.

• However, a value read by T may well be modified by another transaction
(which eventually commits) while T is still in progress.

• T is exposed to the phantom problem.

• A READ UNCOMMITED transaction doesn’t obtain any lock at all. So, it can
read data that is being modified. Such transactions are allowed to be READ
ONLY, or used in cases when reading dirty data does not matter

Transaction Isolation Levels

Examples in PostgreSQL – renting
movies
mbarsky=> create table rent (movie varchar(2), rented INT);

CREATE TABLE

mbarsky => insert into rent values ('A', 0);

INSERT 0 1

mbarsky => insert into rent values ('B', 0);

INSERT 0 1

mbarsky => insert into rent values ('C', 0);

INSERT 0 1

Isolation level – serializable (default)

mbarsky=> BEGIN;
BEGIN
mbarsky=> SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET

mbarsky=> BEGIN;
BEGIN
mbarsky=> SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET

mbarsky=> SELECT rented FROM rent WHERE movie='A';
rented

0
(1 row)

mbarsky=> UPDATE rent SET rented = 1 WHERE movie = 'A';
UPDATE 1

mbarsky=> SELECT rented FROM rent WHERE movie = 'A';
rented

0
(1 row)

mbarsky=> SELECT rented FROM rent WHERE movie = 'A';
rented

1
(1 row)

mbarsky=> UPDATE rent SET rented = 1 WHERE movie = 'A’;

mbarsky=> COMMIT;
COMMIT

ERROR: could not serialize access due to concurrent update

Checked that movie is available

Rented movie A

Checked that movie is available
The change is not committed yet
NO READ UNCOMMITTED

Sees an update

Does not see an update
Tries to update: row is locked
Waits

Cannot finish transaction. Aborts

Transaction isolation levels

Level Reading

Uncommitted Data

(Dirty Read)

Unrepeatable

Read (different

values in the same

rows)

Phantom (different

collections of

rows)

READ

UNCOMMITED

Maybe Maybe Maybe

READ

COMMITTED

No Maybe Maybe

REPEATABLE

READ

No No Maybe

SERIALIZABLE No No No

Isolation level – repeatable reads

mbarsky=> BEGIN;
BEGIN

mbarsky=> BEGIN;
mbarsky=> SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SET
mbarsky=> SELECT * FROM rent;
movie | rented
-------+--------
B | 0
C | 0
A | 1
(3 rows)

mbarsky=> UPDATE rent SET rented = 1 WHERE movie = 'B';
UPDATE 1

mbarsky=> SELECT * FROM rent;
movie | rented
-------+--------
B | 0
C | 0
A | 1
(3 rows)
(1 row)

mbarsky=> COMMIT;
COMMIT

Rented movie B

mbarsky=> SELECT * FROM rent;
movie | rented
-------+--------
B | 0
C | 0

Reads the same values as when it
started – repeatable reads
guaranteed

Reads the same values as when it
started – repeatable reads
guaranteed – even after T1
commits

Isolation level – repeatable reads

mbarsky=> BEGIN;
BEGIN

mbarsky=> BEGIN;
BEGIN
mbarsky=> SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SET
mbarsky=> SELECT * FROM rent;
movie | rented
-------+--------
B | 0
C | 0
A | 1
(3 rows)

mbarsky=> INSERT INTO rent VALUES('D', 0);
INSERT 0 1 mbarsky=> SELECT * FROM rent;

movie | rented
-------+--------
B | 0
C | 0
A | 1
(3 rows)
(1 row)

mbarsky=> COMMIT;
COMMIT

New row

mbarsky=> SELECT * FROM rent;
movie | rented
-------+--------
B | 0
C | 0
A | 1
(3 rows)
(1 row)

Does not see the new row: no
Phantom problem which was
expected for this isolation level

Does not see Phantom tuple even
after T1 commits

Transaction isolation levels

Level Reading

Uncommitted Data

(Dirty Read)

Unrepeatable

Read (different

values in the same

rows)

Phantom (different

collections of

rows)

READ

UNCOMMITED

Maybe Maybe Maybe

READ

COMMITTED

No Maybe Maybe

REPEATABLE

READ

No No Maybe (No in PG)

SERIALIZABLE No No No

Postgre repeatable reads – no
phantoms
From PostgreSQL documentation:

• In PostgreSQL the Repeatable Read isolation level only sees data
committed before the transaction began

• It never sees either uncommitted data or changes committed during
transaction execution by concurrent transactions.

• This is a stronger guarantee than is required by the SQL standard for this
isolation level, and prevents all of the phenomena including phantoms.

• Thus, successive SELECT commands within a single transaction see the
same data, i.e., they do not see changes made by other transactions
that committed after their own transaction started.

• Applications using this level must be prepared to retry transactions due
to serialization failures.

Isolation level – read committed

mbarsky=> BEGIN;
BEGIN

mbarsky=> BEGIN;
BEGIN
mbarsky=> SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
SET

mbarsky=> UPDATE rent SET rented = 1 WHERE movie = 'D';
UPDATE 1

mbarsky=> SELECT * FROM rent;
movie | rented
-------+--------
C | 0
A | 1
B | 1
D | 0
(4 rows)

mbarsky=> COMMIT;
COMMIT

Update by T1

Does not see the change – T1 did
not commit yet

Sees the change after T1 commits:
so 2 reads are different within the
same transaction – non-repeatable
reads

mbarsky=> SELECT * FROM rent;
movie | rented
-------+--------
C | 0
A | 1
B | 1
D | 1
(4 rows)

Transaction isolation levels

Level Reading

Uncommitted Data

(Dirty Read)

Unrepeatable

Read (different

values in the same

rows)

Phantom (different

collections of

rows)

READ

UNCOMMITED

Maybe Maybe Maybe

READ

COMMITTED

No Maybe (Yes) Maybe (Yes)

REPEATABLE

READ

No No Maybe (No in PG)

SERIALIZABLE No No No

How about read uncommitted?

• In PostgreSQL, you can request any of the four standard transaction

isolation levels.

• But internally, there are only three distinct isolation levels, which

correspond to the levels Read Committed, Repeatable Read, and

Serializable.

• When you select the level Read Uncommitted you really get Read

Committed, and phantom reads are not possible in the PostgreSQL

implementation of Repeatable Read, so the actual isolation level might be

stricter than what you select.

• This is permitted by the SQL standard: the four isolation levels only define

which phenomena must not happen, they do not define which phenomena

must happen.

Transaction: collection of actions that bring
DB from one consistent state to another

Consistent DB Consistent DB’T

If T starts with consistent state + T executes in isolation

T leaves consistent state

We learned how to ensure that concurrent (interleaving) actions appear as if
each transaction runs in isolation

Inconsistent DB

We still may end up with an
inconsistent DB:

• Erroneous data entry

• Transaction bug (application programmer error)

• DBMS bug (DBMS programmer error)

• Other program bug

• System and media failures

• power loss

• memory failure

• processor stop

• disk crash

• catastrophic failure: earthquake, flood, end of world

Summary: ACID transactions

• Consistency: Database constraints preserved. Transaction,
executed completely, takes database from one consistent
state to another: serializable schedules

• Isolation: It appears to the user as if only one process
executes at a time: locking

• Atomicity: Whole transaction or none is done: logging

• Durability: Effects of a process survive a crash: logging,
recovery, RAID

