
Summary so far

A database (instance) is a
collection of data
compliant with the schema

A data model is a
collection of concepts

A schema is a
description of data,
using data model.

Process of database design

• Notation for expressing designs: Entity-Relationship (E/R)
model

Ideas ER design
Relational

schema
Physical

database

Concrete

design
Abstract

design

Drinkers addrname

Beers

manfname

Bars

name

license

addr

Bars sell some
beers.

Drinkers like
some beers.

Drinkers frequent
some bars.

Step 1. Identify entities (entity sets)
and their attributes

Drinkers addrname

Beers

manfname

Bars

name

license

addr

Sells Bars sell some
beers.

Likes

Drinkers like
some beers.Frequents

Drinkers frequent
some bars.

Step 2. Identify relationships between
entities (relationship sets) and their
attributes

Multiple relationships may exist
between the same two entity sets

Drinkers BeersLikes

Favorite

Recursive (self)-relationships

Drinkers

Buddies

1 2

Drinkers DrinkersBuddies

Drinkers

Married

husband wife

Buddies

Likes

Frequents

…

…

Same entity in different roles

Bars Beers

Drinkers

name nameaddr manf

name addr

license

Preferences

Ternary relationships

Multiplicity of relationships

• many‐to‐many (binary or ternary)

• one‐to‐many

• mandatory:

• optional:

• one-to-one

• both mandatory:

• one mandatory, one optional:

Multiplicity of Relationships

Drinkers BeersLikesmany-many

Drinkers BeersFavoritemany-one

Manfs BeersBest-

seller
one-one

Testing multiplicities

B1

B3

B2

B4

D1

D3

D2

Bars Drinkers

Frequents
many

Testing multiplicities

B1

B3

B2

B4

D1

D3

D2

Bars Drinkers

Frequents

many

Multiplicity of multiway relationships:
1/3

Students CoursesEnrolls

ID

Name

ID

Name

Assisting

TAID

Name

At most 1 TA per course

Multiplicity of multiway relationships:
2/3

Students CoursesEnrolls

ID

Name

ID

Name

Assisting

TAID

Name

Multiple TAs per course

Multiplicity of multiway relationships:
2/3 problem

• Works if each TA is a TA of all students

• Student and TA connected through Course

• But what if students were divided among multiple TAs?

• Then a student in CMPT 321 would be related to all of
the TA's for CMPT 321 —which one has helped him?

• Ternary relationship is helpful here

Multiplicity of multiway relationships:
3/3

Students

Courses

TAs

Enrolls

Students Courses TAs

Condi CMPT 321 Donald

George CMPT 321 Dick

Alberto CMPT 321 Colin

… … …

Enrolls entries:

Enrolls determines

TA:

(student, course) 

at most one TA

Multiplicity test for multiway
relationships: example 1

Take every PAIR of entities and see to how many entities it is
related in the third:
(Student A, Course B) -> 1 TA
(Course B, TA C) -> multiple students
(Student A, TA C) -> possibly multiple courses over the years

Students

Courses

TAs

Enrolls

Multiplicity test for multiway
relationships: example 2

Rental

VideoStore

Customer

Movie

date

Where should we put arrows here?

Decomposing ternary relationships
into binary using entity set

Rental

Customer

Store

Movie

StoreOf

MovieOf

BuyerOf

date

Rental

VideoStore

Customer

Movie

date

The schema will be the same
Rental (store, movie, customer, date)

Multivalued attributes are not
allowed

Several
licenses per
bar

Bars Beers

Drinkers

name nameaddr manf

name addr

license

Preferences

Multivalued attributes should be
pulled out into an entity

Bars Beers

Drinkers

name nameaddr manf

name addr

Preferences

Licenses

id type

Even if they form relationship with
only a single entity

Bars Beers

Drinkers

name nameaddr manf

name addr

Preferences

Licenses

id type

Entity Sets Versus Attributes

Example of bad design. Why?

1. Repeats the manufacturer’s address once for each beer
2. Loses the address if there are temporarily no beers for a

manufacturer

Beers

name manf manfAddr

What to do in this case?

From attributes to entity sets

Beers ManfsManfBy

name name addr

• Manfs deserves to be an entity set because of the non-key
attribute addr

• Beers deserves to be an entity set because it is the “many” of
the many-one relationship ManfBy

When to replace an attribute with an
entity set

• An entity set should satisfy at least one of the following
conditions:

1. It is more than the name of something - it has at least
one non-key attribute

or
2. It is the “many” in a many-one or many-many

relationship

• Intuition
• A “thing” in its own right => Entity Set
• A single-valued “detail” about some other “thing” =>

Attribute

Basic E/R design: summary

• Identify entities (entity sets) and their attributes

• Identify relationships between entities (relationship sets)
and their attributes

• Are there recursive (self)-relationships?

• Are there different roles for the same entity?

• Do we need ternary relationships?

• Attribute or entity?

• Mark multiplicity

Entity-Relationship diagrams:
refinements

Lecture 01.02
By Marina Barsky

CMPT 321, Fall 2017

1. Keys
2. Subclasses
3. Week entity sets
4. Aggregates

for entity sets

Keys

• A key (for an entity set) is a set of attributes such that no two
entities agree on all the attributes of the key

• In E/R, we underline the key attribute(s)

Beersname manf

Keys

Keys?

Movies Stars-In Stars

length filmTypetitle year

Owns

name address

Studios name

address

Keys

Movies Stars-In Stars

length filmTypetitle year

Owns

name address

Studios name

address

Internal vs. surrogate Keys

• In most cases, a key is formed by one or more attributes of the
entity itself (internal keys)

• Often, people introduce attributes whose role is to serve as a
surrogate key:

• Companies assign employee ID’s to all employees, and
these ID’s are carefully chosen to be unique numbers.

• In US/Canada everyone has a SSN/SIN

• Students ID’s in universities

• Driver license numbers

• Automobile registration numbers

Rules about key selection

• Attributes with possible missing values cannot form a key

• Internal keys preferable to surrogate key

• One/few attributes is preferable to many attributes

Possible problems with internal keys:
multiple attributes and strings

• Wasteful
• e.g. Movies (title, year,…): 2 attributes, ~16 bytes

• Number Of movies ever made << 232 (4 bytes) => Integer movieID
key saves 75% space

• Break encapsulation
• e.g. Parent (firstName, lastName, phone,…)

• Security/privacy hole => Integer parentID prevents information
leaks

• Can change
• Name or phone number change?

• Parent and child with same name?

• Parent with no phone?

If we have a global authority over our
database – we create a surrogate key

Numeric surrogate IDs are always available, immutable,
unique

Also: computers are really good at integers

in the ER model

Inheritance

Subclasses

• Sometimes, an entity set contains certain entities that have
special properties not associated with all members of this
entity set.

• In this case it is useful to define special-case entity sets, or
subclasses, each with its own attributes and relationships

Subclasses

Relate parent with child by a special (1-1) relationship
called isa

Voices

to Stars

Movies

length title year filmType

Cartoons

isa isa

Murder-

Mysteries

weapon

Inheritance in the E/R Model

• In the object-oriented world, property values are stored in
one place only:

Subclasses inherit the property from superclasses

• In contrast, E/R entities participate in all subclasses to which
they belong

Voices

to Stars

Movies

length title year filmType

Cartoons

isa isa

Murder-

Mysteries

weapon

Example

• Roger Rabbit, which is both a cartoon and murder-
mystery

• will have one tuple in each of all three entity sets:
Movies, Cartoons, and Murder-Mysteries

Keys for entity set hierarchies

In entity set hierarchies the key at root is key for all.
{title,year} is the key for Movies, Cartoons and Murder-Mysteries.

Voices

to Stars

Movies

length title year filmType

Cartoons

isa isa

Murder-

Mysteries

weapon

Weak entity sets

Weak entity sets

• It is possible that the key of an entity set is composed of
attributes, some or all of which do not belong to this entity
set

• Such an entity set is called a weak entity set

• We use weak entity sets to identify sub-units of the main
entity, rather than sub-classes

Supporting relationships

• In a weak entity set E the key consists of:

• Zero or more its own attributes

• Keys from other entities reached by many-one
relationship from E

• These relationships are called supporting relationships

Crews StudiosUnit-of

number role
name

address

No. of emp.

• E.g. “Crew 1, Special Effects” for Paramount, “Crew 1, Special
Effects” for Fox etc.

• Need to add the key of Studios, in order to uniquely identify a
crew

• Crews is a weak entity set

Example of a weak entity set

In E/R diagrams:

Crews StudiosUnit-of

number role
name

address

No. of emp.

• Double rectangle for the weak entity set
• Double diamond for a supporting many-one relationship

Another Example – Football Players

• name is almost a key for football players, but there might be
two with the same name.

• number is certainly not a key, since players on two teams
could have the same number.

• But number, together with the team name related to the
team by Plays-on should be unique.

Players TeamsPlays-
on

name namenumber

Players TeamsPlays-
on

name namenumber

Football players - solution

Crews StudiosUnit-of

number role name address

No. of emp.

Operat. Cities

Op

Supporting vs. regular relationships

Not all the many-one relationships connecting a weak entity
set to other entity sets are supporting relationships:

Weak Entity Sets – when do we need
them?

• Usual reason: no global authority capable of creating
unique ID’s (surrogate key)

E.g.: Unlikely there could be an agreement to assign unique
player numbers across all football teams in the world

Weak Entity Sets - when we don’t
need them

• Beginning database designers often doubt that anything
could be a key by itself

• They make all entity sets weak, supported by all other entity
sets to which they are linked

• It is usually better to create unique surrogate or use existing
IDs

• Social security number

• Automobile VIN

• Employee ID

Aggregation

Example: redundant information
in relationships

Boys Girls

Place

name nameaddr addr

name addr

meets

dates

date

Dates relationship already defines the
pair ids in meets

Boys Girls

Place

name nameaddr addr

name addr

meets

dates

date

Dates relationship already defines the
pair ids in meets

Boys Girls

Place

name nameaddr addr

name addr

meets

dates

date
We want to connect
2 relationships – but
this is not allowed –
they do not unique
entities!

We abstract the info into an
aggregate entity

Boys Girls

Place

name nameaddr addr

name addr

meets

dates

date

Aggregation: example 2

Programmer Branch

Manager

manages

Assigned to

Project

Quaternary
relationship

Abstract each assignment into
aggregated entity

Programmer Branch

Manager

manages

Assigned to

Project

E/R notation: last notes

• Limitations of the ER Model:

• A lot of data semantics can be captured but some
cannot (such as functional dependencies)

• Key to successful model: parsimony

• As complex as necessary, but no more

• Choose to represent only “relevant” things

