
From E/R Diagrams 
to Relations (tables)

Lecture 01.03
By Marina Barsky

CMPT 321, Fall 2017



Rules of converting E/R diagrams 
to relations (tables)

Ideas ER design
Relational 

schema
Physical 

database

Concrete 

design

Process of database design



Terminology

• Every attribute of an entity has an atomic type

• Relation Schema: relation name + attribute names + 
attribute types

• Relation instance: set of tuples

• Database Schema: set of relation schemas

• Database instance:  relation instance for every relation in 
the schema



Example

title year length filmtype

Star Wars 1977 124 Color

Mighty Ducks 1991 104 Color

Wayne’s World 1992 95 Color

Movies

length filmType

title year

Relation Schema:
Movies (title:string, year:int, length:int, filmtype:string)

Relation instance:

Attribute
Attribute type
Tuple: (Star Wars, 1977, 124, Color)



From E/R to relational schema

• Each entity set becomes a relation.
Its attributes are 

• the attributes of the entity set

• Each relationship becomes a relation
It’s attributes are

• the keys of the entity sets that it connects, plus

• the attributes of the relationship itself.



BBD to relations

Likes (drinker, beer)

Favorite (drinker, beer)

Married(husband, wife)

Buddies(name1, name2)

LikesDrinkers Beers

Favorite

Married

husband

wife

name addr name manf

Buddies

1 2



Relationship Stars-In between entity sets Movies and Stars is 
represented by a relation with schema: 

Stars-In(title, year, starName)

A sample instance is:

title year starName

Star Wars 1977 Carrie Fisher

Star Wars 1977 Mark Hamill

Star Wars 1977 Harrison Ford

Mighty Ducks 1991 Emilio Estevez

Wayne’s World     1992           Dana Carvey

Wayne’s World     1992           Mike Meyers

We rename here 

just for clarity.

Example: relationship to relation 
(with Renaming)



Relationship Stars-In between entity sets Movies and Stars is 
represented by a relation with schema: 

Stars-In(title, year, starName)

A sample instance is:

title year starName

Star Wars 1977 Carrie Fisher

Star Wars 1977 Mark Hamill

Star Wars 1977 Harrison Ford

Mighty Ducks 1991 Emilio Estevez

Wayne’s World     1992           Dana Carvey

Wayne’s World     1992           Mike Meyers

Redundancy? 
No, just multi-attribute keys



Why not surrogate key for 
identifying each movie entity
• If we want to combine data from IMDB, MovieLens, Netflix –

can only identify movies by name, year

• No globally accepted movie identifier exists

• Movies, video games vs. books (International Standard Book 
Number)



Stars-In(title, year, duration, starName)

A sample instance is:

title year duration starName

Star Wars 1977 120 Carrie Fisher

Star Wars 1977 120 Mark Hamill

Star Wars 1977 120 Harrison Ford

Mighty Ducks 1991 130 Emilio Estevez

Wayne’s World     1992           90 Dana Carvey

Wayne’s World     1992           90 Mike Meyers

Redundancy? Yes



Many-One Relationships

• We not always have a separate relation for them. 

Instead of having
Drinkers(name, addr) and 
Favorite(drinker, beer) 

have
Drinkers(name, addr, favBeer)

Drinkers BeersLikes

Favorite



Risk with Many-Many Relationships

• Combining Drinkers with Likes would be a mistake. Why?

• It leads to harmful redundancy, as:

name addr beer

Sally 123 Maple Bud

Sally 123 Maple Miller

Redundancy



Many-to-Many Ternary  Relationships

Bars Beers

Drinkers

name nameaddr manf

name addr

license

Preferences

Preferences(drinker_name, beer_name, bar_name)



Aggregate entities

Boys Girls

Place

name nameaddr addr

name addr

meets

dates

date

Meets (boy_name, girl_name, place_name)

We pull out only 
keys that uniquely 
identify aggregate 
entity

to_datefrom_date



Handling weak entity sets

• We use week entity sets to identify sub-units of the main 
entity, rather than sub-classes

• Relation for a weak entity set must include attributes for its 
complete key (including those belonging to other entity 
sets), as well as its own, non-key attributes.

• A supporting (double-diamond) relationship is redundant 
and yields no relation.



Example 1: movies

Studios(name, address, no_of_emp)
Crews(number, studioName, role)
Unit-of(number, studioName, studioName2)

Must be the same

Unit-of becomes part of Crews

Crews StudiosUnit-of

number role
name

address

No. of emp.



Example 2: recipe

Steps

RecipeUnit-of
number time

name
author

Tools

required

name

Recipe(name, author)
Steps(recipe_name, recipe_author, step_number, descr, time)
Tools(name,…)
Tools_required (recipe_name, recipe_author, step_number, tool_name)

description



Subclass Structures to Relations
Two main approaches

OO Approach

• An object belongs to exactly one class. 

• An object inherits properties from all its super-classes 
but it is not a member of them.

E/R Approach

• An “object” can be represented by entities belonging to 
several entity sets that are related by isa relationships. 

• The linked entities together represent the object and 
give that object all its properties (attributes and 
relationships).



Subclasses example

Voices

to Stars

Movies

length title year filmType

Cartoons

isa isa

Murder-

Mysteries

weapon

How to convert to relations?



OO approach: example

• Every subclass has its own relation.

• All the properties of that subclass, including all its inherited 
properties, are represented in this relation.

• Example:

Movies ( title, year, length, filmType )

Cartoons ( title, year, length, filmType )

MurderMysteries ( title, year, length, filmType, weapon)

Cartoon-MurderMysteries ( title, year, length, filmType, weapon)

Voices( title, year, starName )



• Can we merge Cartoons with Movies?

– If we do, we lose information about which movies are 
cartoons.

• Is it necessary to create two relations voices: one connecting 
cartoons with stars, and one connecting cartoon-murder-
mysteries with stars?

– Not, really. We can use the same relation (table). 



E/R Approach: example

• We will have the following relations:

Movies (title, year, length, filmType)

MurderMystery (title, year, weapon)

Cartoons (title, year)

Voices (title, year, name)



• Remarks:

• There is no relation for class Cartoon-MurderMystery. 

• For a movie that is both, we obtain: 

• its voices from the Voices relation 

• its weapon from the MurderMystery relation 

• and all other basic information from the Movies relation 

• Relation Cartoons has a schema that is a subset of the schema for 
the relation Voices. Should we eliminate the relation Cartoons?

• However there may be silent cartoons in our database. Those 
cartoons would have no voices and we would lose them



Comparison of Approaches

OO translation advantage:

• The OO translation keeps all properties of an object together 
in one relation

OO translation drawback:

• Too many tables! 

• If we have a root and n children we need 2n different 
tables!!!



E/R translation advantage:

• The E/R translation allows us to find in one relation tuples 
from all classes in the hierarchy 

E/R translation drawback:

• We may have to look in several relations to gather information 
about a single object

Comparison of Approaches



• What movies of 2009 were longer than 150 minutes?

• Can be answered directly in the E/R approach.

• In the OO approach we have to examine all the relations. 

• What weapons were used in cartoons of over 150 minutes in 
length?

– More difficult in the E/R approach. 

• We should access Movies to find those of over 150 mins. 

• Then, we have to access Cartoons to see if they are 
cartoons.

• Then we should access MurderMysteries to find the 
weapon.

– In OO approach we need only access the Cartoon-
MurderMysteries table.

Examples



Null Values to implement subclasses
• If we are allowed to use NULL in tuples, we can handle a hierarchy 

of classes with a single relation. 

• For the Movie hierarchy, we would create a single relation:

• Movie (title, year, length, filmType, studioName, starName, 
voice, weapon)

• “Who Framed Roger Rabbit?”, being both a cartoon and a 
murder-mystery, is represented by a tuple that had no NULL’s. 

• The “Little Mermaid,” being a cartoon but not a murder-
mystery, has NULL in the weapon component.

• This approach allows us to find all the information about an object 
in one relation. Drawback?



How to ensure that the schema is 
“good”?

• The process of translation should ensure that there is no  
redundancy.

• But only with respect to what the E/R diagram 
represents.

• Crucial thing we are missing:  functional dependencies (We 
only have keys, not other FDs.)

• So we still need to learn the design theory to fully eliminate 
redundancy



Converting logical schema into 
physical tables

Ideas ER design
Relational 

schema
Physical 

database

Details slightly differ for each DBMS



Data Definition Language (DDL): 
converitng Schema into physical 
tables

CREATE TABLE table_name
(

column_name1 data_type,
column_name2 data_type,
column_name3 data_type,
....

)



SQLite3

• Fast, small-footprint, installation-free database, well suited 
for data analysis. 

https://www.sqlite.org/whentouse.html

• Just download sqlite3 and start creating databases and 
querying them

http://www.sqlite.org/download.html

https://www.sqlite.org/whentouse.html
http://www.sqlite.org/download.html


Creating tables in SQLite 
(in file movie_tables.sql)

DROP TABLE if exists MovieStar; 

/* Delete table if it already exists */

CREATE TABLE MovieStar(

name VARCHAR (50) PRIMARY KEY,

address text,

gender char(1),

birthdate char(20)

);



Creating tables in SQLite 
(in file movie_tables.sql)

DROP TABLE if exists Movie; 

/* Delete table if it already exists */

CREATE TABLE Movie ( 

title varchar(30), 

year int, 

length int, 

inColor int, 

studioName varchar(20), 

producerC varchar(3),

primary key (title, year)

);



Creating database in SQLite

• Launch sqlite in the terminal or command prompt: 
sqlite3

SQLite version 3.13.0 2016-05-18 10:57:30

sqlite> .open movies

sqlite> .read movie_tables.sql

sqlite> SELECT name FROM sqlite_master WHERE type='table';

To see all 
the tables

Creates database named movies

Runs sql script to create empty tables



SQLite data types

• TEXT

• NUMERIC

• INTEGER

• REAL

• BLOB



Date and time
• SQLite does not support date and time storage classes. You 

can use the TEXT, INT, or REAL to store date and time values:

1. TEXT: A date in a format like "YYYY-MM-DD 

HH:MM:SS.SSS"

2. REAL: The number of days since noon in Greenwich on 

November 24, 4714 B.C.

3. INTEGER: The number of seconds since 1970-01-01 

00:00:00 UTC

• You can choose to store dates and times in any of these 

formats and freely convert between formats using the built-

in date and time functions.



Populate tables with data

INSERT INTO Movie (title, year, length, inColor, studioName, 
producerC)

VALUES('Godzilla', 1998, 120, 1 , 'Paramount', 123);


