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Disk blocks

• The Block (transferred as a Page to 
RAM) is a fixed-size portion of 
secondary storage corresponding to 
the amount of data transferred in a 
single access and physically 
occupies one or more consecutive 
sectors 

• Typical block size: 1, 4, 8, 16, or 32 KB. 

• Has to be set before creating database

• The data is read and written in 
blocks

track

geometrical 
sector

disk sector

block



Auxiliary data structures for 
efficient search: indexes

• Goal: quickly locate the record given a key

• Idea 1:

• The records are mapped to the disk blocks in specific ways: 

we deduce the disk location from a key, because records 

either sorted by key or the block is a hash of a key

• Idea 2:

• Store records in a pile 

• Provide auxiliary data structures guiding the search (think 

library index/catalogue)



Flat indexes

• Have a catalog of search keys which is smaller than the 

entire table and can be searched more efficiently (in 

RAM or with less disk I/Os)

• Inside the index each value of a search key is associated 

with a unique, system-generated physical address of a 

corresponding tuple on disk: RID (file number, block 

number, slot within the data block)



• Dense index – each record has 

its representative inside an 

index

• If the table has multiple fields, 

the index – which stores only 

key-RID pair - is much smaller –

may fit into RAM

• The keys in the index are 

sorted: use binary search, 

buffer guiding pointers at 

1/2N, 1/4N, 3/4N, 1/8N, 3/8N, 

5/8N, 7/8N –th positions to 

save disk I/Os

Sorted fileIndex

DataAdditional 
structure on top

Dense indexes



• Search through index itself 

can answer if a record with 

key A exists or produce 

counts of records by key 

without accessing a data file

• Dense indexes can be added 

even to unordered heap files

Heap fileIndex

DataAdditional 
structure on topDense indexes

on unsorted files



Sparse indexes

• Sparse index – contains 

key-RID pairs for only a 

subset of records, 

typically first in each 

block. 

• Works only with sorted 

files – why?

• Allows for very small 
indexes - better chance of 
fitting in memory

• Tradeoff: must access the 
relation file even if the 
record is not present

Sorted fileIndex

DataAdditional 
structure on 
top



• Primary index – indexes on 

a sorted file for the sorting 

attribute 

• Only one primary index 

per relation – otherwise 

needs to maintain several 

sorted copies of the same 

data

Sorted filePrimary 
Index

Primary indexes



What if a flat index is too big?

Example:

• Relation of size: N = 500 GB = 5*1011 bytes

• 100 tuples per block: 5*109 blocks to index

• Each key-blockID pair is at least 16 bytes

• So, even keeping one entry per page (sparse index) 
takes too much space - 8 GB 

Solution: build an index on the index itself!



Dynamic indexes: B+ trees

B+ tree

3

1 2 3 4 5

R1 R2 R3 R4 R5

Data stored separately



From binary search trees 
to k-2k B-trees
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From binary search trees 
to k-2k B-trees
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From B-trees to B+ trees

B-tree B+ tree
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Data stored together with the key Data stored separately



B+ tree vs. B-tree
1. B+ -tree is a B-tree where internal nodes contain only keys 

and navigation pointers (not records, not pointers to 

records), and all the records (or pointers to records) are 

stored in leaves.

2. In B+ tree each internal node is stored in a page, and more 

keys fit in a single page.  The navigational part of the index 

is overall smaller, and partly manageable in RAM. 

3. The leaf nodes of B+ trees are linked, so doing a full scan of 

all objects in a tree requires just one linear pass through all 

the leaf nodes. A B tree, on the other hand, would require 

a traversal of every level in the tree (random access). 



B+ tree (or simply B-tree)

• B+ tree is the only variant of B-trees used in DBMS

• In all research papers and implementations: we say B-tree -
imply B+ -tree



k-2k B trees: properties I
• Each node contains p pointers: k <= p <= 2k

k=2. 
Each node has 2,3,or 4 child pointers and 

between 1 and 3 keys 



k-2k B trees: properties II
• There are 2 types of nodes:

• Internal (non-leaf) node: 

• all p pointers point to the child nodes

• p-1 keys contain navigational info

• Leaf node: 1 pointer points to the next leaf

• p-1 key-value pairs (child pointers), where value can 
be RID or the entire record

• the number of child pointers is at least k*

* In practice, the leaf node may have its own parameters on min and max key-value 
pairs, because the size of a value in key-value pair can be larger than the pointer used 
in the internal node.  However, for the purposes of this lecture, we assume that min 
number of key-value pairs is k, and max is 2k-1 (1 pointer points to the next leaf).



k-2k B trees: properties III
• Each key in an internal node guides the search: 

All keys in the left sub-tree of a given key X have key value < X, 
all keys in the right sub-tree have key value >= X

3 6 9 12 15 18 21 24 27 30 33 36 39 42

* * * * * * * * * * * * * *

3912 21

30



Degree=order=fanout
=branching factor
• Degree d (=2*k) means that all internal nodes have space for at 

most d child pointers

Example

• Each node is stored in 1 block of size 4096 bytes

• Let
• key 4 Bytes, 
• pointer 8 Bytes. 

• Let’s solve for d:

4(d -1)+ 8(d)  4096 

 d  341



B-tree capacity: example

d ≈ 300

a typical node is 67% full (fill factor) ≈ 200 keys in each node

We have:

• 200 keys at the root

• At level 2 – for each key – another 200 keys – total 2002 nodes

• At level 3: 2003

• At level 4: 2004  16  108 records can be indexed.

• Suppose each record = 1 KB - we can index a relation of size 

16  108  103  1.6 TB

• If the root and levels 2 and 3 are kept in main memory, then finding RID 
requires 1 disk I/O!



Buffering top-level nodes

• Often top levels are held in buffer pool:

• Level 1 = 1 page = 4 KB

• Level 2 =       200 pages =         800 KB

• Level 3 =  40,000 pages =         160 MB   

• In this case, in practice, lookup requires 1 disk I/O    



B-tree lookup

Recursive procedure:

• Ends when we are at a leaf. In this case, look among the 
keys there. If the i-th key is K, then the i-th pointer will 
contain RID of the desired record. 

• If we are at an internal node with keys K1,K2,…,Kd, then if 
K<K1we call lookup with the first child node, if K1K<K2 we 
use the second child, and so on.



B-tree lookup example

3 6 9 12 15 18 21 24 27 30 33 36 39 42

* * * * * * * * * *

279 15 39

21 33

* * * *

Find record with 
key 24

RID of record 
with key 24

To record with 
key 24



B-tree: range search

• Query: select all records where key is in range [x,y]

• Use x as a search key

• Once at the leaf: scan the data entries to find x or the 
first key that is > x (if x is not there)

• After that, data entries are retrieved sequentially until 
the first record with key > y



B-tree in action

• When data are inserted or removed from a node, its number of 
child nodes changes. 

• In order to maintain the pre-defined capacity range, internal 
nodes must be joined or split.

• B-tree is a dynamic data structure with a guaranteed upper 
bound for lookup, insertion and deletion: O (log d N) disk I/Os

where 

N – total number of leaf nodes (leaf blocks)

d – branching factor



B Trees: efficiency

• Searching:

• logd(N) – Where d is the order, and N is the maximum total number 
of entries in all the leafs

• Insertion:

• Find the leaf to insert into

• If full, split the node, and adjust index accordingly

• Similar cost as searching

• Deletion

• Find the leaf node

• Delete

• May not remain half-full; must adjust the index accordingly

• Either borrow 1 key from the sibling

• Or merge with the sibling if there are not enough keys to 
borrow



13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insertion
Try to insert a search 

key = 40.

First, lookup for it, in 

order to find where to 

insert.

It has to go here, 

but the node is full!



13

7 23 31 43

2 3 5 7 11 13 17 19 23 29

31 37

43 47

40 41

Beginning of the insertion of key 40

Observe the new node and the 

redistribution of keys and pointers

What’s the problem?

No parent yet for the new node!



13

7 23 31 43

2 3 5 7 11 13 17 19 23 29

31 37

43 47

40 41

Continuing the Insertion of key 40
We must now insert a 

pointer to the new leaf into 

this node. We must also 

associate with this pointer 

the key 40, which is the 

least key reachable 

through the new leaf.

But the node is full. Thus it 

too must split! 



13

7 23 31

2 3 5 7 11 13 17 19 23 29

31 37

43 47

40 41

Completing of the Insertion of key 40

43

This is a 

new node.

•We have to redistribute 3 keys and 4 pointers.

•We leave three pointers in the existing node 

and give two pointers to the new node. 43 goes 

to the new node.

•But where the key 40 goes?

•40 is the least key reachable via the new node. 



13 40

7 23 31

2 3 5 7 11 13 17 19 23 29

31 37

43 47

40 41

Completing of the Insertion of key 40

43

It goes here!

40 is the least key 

reachable via the new 

node.



Insertion in words
• We try to find a place for the new key in the appropriate leaf, and we put it 

there if there is room.

• If there is no room in the proper leaf, we “split” the leaf into two and divide 
the keys between the two new nodes, so each is half full or just over half 
full.

• Split means “add a new block”

• The splitting of nodes at one level appears to the level above as if a new 
key-pointer pair needs to be inserted at that higher level. 

• We may thus apply this strategy to insert at the next level: if there is 
room, insert it; if not, split the parent node and continue up the tree.

• As an exception, if we try to insert into the root, and there is no room, then 
we split the root into two nodes and create a new root at the next higher 
level; 

• The new root has the two nodes resulting from the split as its children. 



13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Deletion Suppose we delete 

key=7



13

7 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Deletion

This leaf node is 

less than half full. 



13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Deletion (Raising a key to parent)

This node is less than half 

full. So it borrows key 5 from 

the sibling, and updates 

parent node



13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Deletion Suppose we delete 

now key=11.

No sibling with 

enough keys to 

borrow.

Note that node 

(13,17,29) is not a 

sibling – because it 

has a different 

parent



13

23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Deletion

We merge, i.e. delete a block from the index. 

However, the parent ends up having 1 

pointer and zero keys



23

13 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Deletion

Parent: Borrow pointer from sibling!



Deletion in words
• We find a place of the deleted key in the appropriate leaf, and 

remove the corresponding entry

• If the leaf node was at a minimum capacity before the 
deletion, it is now below minimum

• If its most populous sibling contains more than d/2 children 
– borrow one and update parent pointer

• Else if there are no nodes to borrow – merge current node 
with its sibling

• Update parent pointer. If there are less than d/2 children –
borrow key from right sibling



Motivation for Indexes
Consider:

SELECT title
FROM Movies
WHERE studioName = 'Disney' AND year =1995;

• There might be 10,000 Movies tuples, of which only 200 
were made in 1995.
• Naive way to implement this query is to get all 10,000 tuples and 

test the condition of the WHERE clause on each. 
• Much more efficient if we had some way of getting only the 200 

tuples from the year 1995 and testing each of them to see if the 
studio was Disney. 

• Even more efficient if we could obtain directly only the 10 or so 
tuples that satisfied both the conditions of the WHERE clause.



Movies(

title, 

year, 

length, 

studioName); 

Assume secondary indexes on 
studioName and year.

SELECT title 

FROM Movies 

WHERE 

studioName='Disney' 

AND year = 1995; 

Pointer Intersection example

RID

Intersection of results 
from 2 indexes gives RID

Schema

Query



Create Index

CREATE INDEX index_name ON table_name (column_name);

Created implicitly if you declare the column to be a PRIMARY 
KEY or UNIQUE. 

Once an index exists, the user does not have to open or use it 
with a command, it is used automatically (by query 
optimizer)

All indexes are stored separately from the table on which they 
are based



Examples

1. CREATE INDEX YearIndex ON Movies(year);

2. CREATE INDEX KeyIndex ON Movies(title, year);

3. CREATE INDEX KeyIndex ON Movies (year, title);

When would it be beneficial to create the third vs. second?

Dropping an index:

DROP INDEX YearIndex; 



Index on primary key

• Often, the most useful index we can put on a relation is an index on its 
key.

• Two reasons:
• Queries in which a value for the key is specified are common. 
• Since there is at most one tuple with a given key value, the index 

returns either nothing or one location for a tuple. 
• Thus, at most one page of the relation must be retrieved to get 

that tuple into main memory

Example
SELECT name
FROM Movie, MovieExec
WHERE title = 'Star Wars' 

AND year='1994' 
AND producerC =cert;



Index on primary key: efficiency

Without Key Indexes

• Read each of the blocks of Movies and each of the blocks of MovieExec
at least once. 
• In fact, since these blocks may be too numerous to fit in main 

memory at the same time, we may have to read each block from 
disk many times (to form a Cartesian product). 

With Key Indexes

• Only two block reads.
• Index on the key (title, year) for Movies helps us find the one 

Movie tuple for 'Star Wars' quickly. 
• Only one block - containing that tuple - is read from disk. 

• Then, after finding the producer-certificate number in that tuple, an 
index on the key cert for MovieExec helps us quickly find the one 
tuple for the producer in the MovieExec relation. 
• Only one block is read again.



Non-Beneficial Indexes

• When the index is not on a key, it may or may not be beneficial. 

Example (of not being beneficial)

Suppose the only index we have on Movies is one on

year, and we want to answer the query:

SELECT *

FROM Movie

WHERE year = 1990;

• Suppose the tuples of Movie are stored alphabetically by title. 

• Then this query gains little from the index on year. If there are, say, 100 
movies per page, there is a good chance that any given page has at least 
one movie made in 1990. 



Beneficial Indexes

• There are two situations in which an index can be effective, even if it is not 
on a key.

1. If the attribute is almost a key; that is, relatively few tuples have a 
given value for that attribute. 
Even if each of the tuples with a given value is on a different page, 
we shall not have to retrieve too many pages from disk.

Example

• Suppose Movies had an index on title rather than (title, year).

SELECT name

FROM Movie, MovieExec

WHERE title = 'King Kong' AND producerC =cert; 



Beneficial Indexes (cont.)

2. If the tuples are "clustered" on the indexed attribute. We cluster a 
relation on an attribute by grouping the tuples with a common value 
for that attribute onto as few pages as possible. 

• Then, even if there are many tuples, we shall not have to retrieve 
nearly as many pages as there are tuples.

Example

• Suppose Movies had an index on year and tuples are clustered on year.

SELECT *

FROM Movie

WHERE year = 1990;



When to create indexes

Trade-off

• The existence of an index on an attribute may speed up 
greatly the execution of those queries in which a value, or 
range of values, is specified for that attribute, and may 
speed up joins involving that attribute as well.

• On the other hand, every index built for one or more 
attributes of some relation makes insertions, deletions, and 
updates to that relation more complex and time-consuming.



Cost Model

1. Tuples of a relation are stored in many pages (blocks) of a 
disk.

2. One block, which is typically several thousand bytes at 
least (e.g. 16K), will hold many tuples.

3. To examine even one tuple requires that the whole block 
be brought into main memory.

The cost of a query is dominated by the number of block 
accesses. Main memory accesses can be neglected. 



Introduction to selection of indexes

StarsIn(movieTitle, movie Year , starName)

Q1:
SELECT movieTitle, movieYear
FROM StarsIn
WHERE starName = s;

Q2:
SELECT starName
FROM StarsIn
WHERE movieTitle = t AND movieYear= y;

I:
INSERT INTO StarsIn VALUES(t, y, s);



Before we begin: answer 

1. How many pages for StarsIn: 10 pages

If we need to examine the entire relation the cost is 10.

2. Average number of movies per star: on the average, a star 
has appeared in 3 movies 

3. Average number of stars per movie: a movie has 3 stars on 
average



Analysis

1. Since the tuples for a given star or a given movie are likely to be spread 
over the 10 pages of StarsIn, even if we have an index on starName or on 
the combination of movie title and movieYear, it will take 3 disk accesses to 
retrieve the 3 tuples for a star or movie. If we have no index on the star or 
movie, respectively, then 10 disk accesses are required.

2. One disk access is needed to read a page of the index every time we use 
that index to locate tuples with a given value for the indexed attribute(s). If 
an index page must be modified (in the case of an insertion), then another 
disk access is needed to write back the modified page.

3. Likewise, in the case of an insertion, one disk access is needed to read a 
page on which the new tuple will be placed, and another disk access is 
needed to write back this page. We assume that, even without an index, 
we can find some page on which an additional tuple will fit, without 
scanning the entire relation.



Average cost for NO INDEX

Action NO INDEX

Q1 10

Q2 10

Ins 2

Average 10p1 + 10p2 + 2(1 - p1 – p2) = 2 + 8p1 + 8p2

p1 is the fraction of times Q1 is executed

p2 is the fraction of times Q2 is executed

1-p1-p2 is the fraction of times I is executed

Q1: SELECT movieTitle, movieYear FROM StarsIn WHERE starName = s;
Q2: SELECT starName FROM StarsIn WHERE movieTitle = t AND movieYear= y;
I: INSERT INTO StarsIn VALUES(t, y, s);



Average cost for Star INDEX

Action NO INDEX INDEX on Star attribute of StarsIn

Q1 10 4 (1 to read an index, 3 to load corresponding blocks

Q2 10 10

Ins 2 4 (read/write 1 page for the index and for the data)

Average 2 + 8p1 +8p2 4p1 +10p2 + 4(1 - p1 - p2) = 4 + 6p2

p1 is the fraction of times Q1 is executed

p2 is the fraction of times Q2 is executed

1-p1-p2 is the fraction of times I is executed

Q1: SELECT movieTitle, movieYear FROM StarsIn WHERE starName = s;
Q2: SELECT starName FROM StarsIn WHERE movieTitle = t AND movieYear= y;
I: INSERT INTO StarsIn VALUES(t, y, s);



Average cost for Movie INDEX

Action NO INDEX Star INDEX INDEX on Movies attributes only

Q1 10 4 10

Q2 10 10 4

Ins 2 4 4

Average 2 + 8p1 +8p2 4 + 6p2 4 + 6p1

p1 is the fraction of times Q1 is executed

p2 is the fraction of times Q2 is executed

1-p1-p2 is the fraction of times I is executed

Q1: SELECT movieTitle, movieYear FROM StarsIn WHERE starName = s;
Q2: SELECT starName FROM StarsIn WHERE movieTitle = t AND movieYear= y;
I: INSERT INTO StarsIn VALUES(t, y, s);



Average cost for both indexes
Action NO 

INDEX
Star 
INDEX

Movies 
INDEX

INDEX on Movies attributes AND Star

Q1 10 4 10 4 (1 page to read an index, 3 to read data)

Q2 10 10 4 4 (1 page to read an index, 3 to read data)

Ins 2 4 4 6 (read/write 1 page for each index and 1 for 
data)

Average 2 + 8p1

+8p2

4 + 6p2 4 + 6p1 4p1 + 4p2 + 6(1 – p1 - p2 ) = 6 - 2p1 - 2p2

p1 is the fraction of times Q1 is executed

p2 is the fraction of times Q2 is executed

1-p1-p2 is the fraction of times I is executed

Q1: SELECT movieTitle, movieYear FROM StarsIn WHERE starName = s;
Q2: SELECT starName FROM StarsIn WHERE movieTitle = t AND movieYear= y;
I: INSERT INTO StarsIn VALUES(t, y, s);



What solution is the best?
Action NO INDEX Star INDEX Movies INDEX INDEX on both

Q1 10 4 10 4 

Q2 10 10 4 4

Ins 2 4 4 6

Average 2 + 8p1 +8p2 4 + 6p2 4 + 6p1 6 - 2p1 - 2p2

p1 is the fraction of times Q1 is executed

p2 is the fraction of times Q2 is executed

1-p1-p2 is the fraction of times I is executed

If p1 = p2 = 0.1:
If p1 = p2 = 0.4:
If p1 = 0.5, p2 = 0.1:
If p1 = 0.1, p2 = 0.5:



Reasoning

• If p1 = p2 = 0.1, then the expression 2+ 8p1 + 8p2 is the smallest, 
so we would prefer not to create any indexes. 

• If p1 = p2 = 0.4, then the formula 6 - 2p1 - 2p2 turns out to be the 
smallest, so we would prefer indexes on both starName and on 
the (movieTitle, movieYear) combination. 

• If p1 = 0.5 and p2 = 0.1, then an index on stars-only gives the best 
average value, because 4 + 6p2 is the formula with the smallest 
value. 

• If p1 = 0.1 and p2 = 0.5, then create an index on movies-only.



Quiz 1 (at home)

• First, build B-tree from records with sorted keys:

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47

• Insert key 1

• Insert keys 14,15,16

• Delete key 23

• Delete all keys >23 (in turn)



Quiz 2 (at home)

• Suppose that the relation StarsIn requires now 100 pages 
rather than 10, but all other assumptions of this example 
continue to hold. Give formulas in terms of p1 and p2 to 
measure the cost of queries Q1 and Q2 and insertion I 
under the four combinations of index/non index discussed 
in the example. 

• Compare with the results in the example for: 

p1 = p2 = 0.1 

p1 = p2 = 0.4 

p1 = 0.5, p2 = 0.1 

p1 = 0.1, p2 = 0.5


