Relational algebra of bags
 Lecture 02.03
 By Marina Barsky

Relational Algebra on Bags

- A bag is like a set, but an element may appear more than once.
- Multiset is another name for "bag."
- Example:
$-\{1,2,1,3\}$ is a bag.
- $\{1,2,3\}$ is also a bag that happens to be a set.
- Bags also resemble lists, but order in a bag is unimportant.
- Example:
- $\{1,2,1\}=\{1,1,2\}$ as bags, but
- [1,2,1] != [1,1,2] as lists.

Why bags?

- SQL is actually a bag language.
- SQL will eliminate duplicates, but usually only if you ask it to do so explicitly.
- Some operations, like projection or union, are much more efficient on bags than sets.
- Why?

Operations on Bags

- Selection applies to each tuple, so its effect on bags is like its effect on sets.
- Projection also applies to each tuple, but as a bag operator, we do not eliminate duplicates.
- Products and joins are done on each pair of tuples, so duplicates in bags have no effect on how we operate.

Example: Bag Selection

$$
\begin{aligned}
& \begin{array}{cc}
R\left(\begin{array}{ll}
A & B
\end{array}\right) \\
\hline 1 & 2 \\
5 & 6
\end{array} \quad \begin{array}{lll}
S\left(\begin{array}{ll}
B & C
\end{array}\right) \\
\begin{array}{ll}
3 & 4 \\
7 & 8
\end{array}
\end{array} \\
& 12 \\
& \sigma_{A+B<5}(\mathrm{R})=\mathrm{A} \quad \mathrm{~B} \\
& 12 \\
& 12
\end{aligned}
$$

Example: Bag Projection

$\pi_{A}(R)=A$
1
1
Bag projection yields always the same number of tuples as the original relation.

Example: Bag Product

$$
\begin{aligned}
& \left.\begin{array}{rl}
R\left(\begin{array}{ll}
A & B
\end{array}\right) \\
\hline 1 & 2 \\
5 & 6
\end{array} \quad \begin{array}{rl}
S(B & C
\end{array}\right) \\
& 12 \\
& \text { - Each copy of the tuple } \\
& (1,2) \text { of } R \text { is being paired } \\
& \text { with each tuple of } \mathbf{S} \text {. } \\
& \text { - So, the duplicates do not } \\
& \text { have an effect on the } \\
& \text { way we compute the } \\
& \text { product. }
\end{aligned}
$$

Bag Union

- Union, intersection, and difference need new definitions for bags.
- An element appears in the union of two bags the sum of the number of times it appears in each bag.
- Example:

$$
\begin{gathered}
\{1,2,1\} \cup\{1,1,2,3,1\} \\
=\{1,1,1,1,1,2,2,3\}
\end{gathered}
$$

Bag Intersection

- An element appears in the intersection of two bags the minimum of the number of times it appears in either.
- Example:
$\{1,2,1\} \cap\{1,2,3\}$
$=\{1,2\}$.

Bag Difference

- An element appears in difference $A-B$ of bags as many times as it appears in A, minus the number of times it appears in B.
- But never less than 0 times.
- Example: $\{1,2,1\}-\{1,2,3\}$

$$
=\{1\} .
$$

Beware: Bag Laws != Set Laws

Not all algebraic laws that hold for sets also hold for bags.

Example

- Set union is idempotent, meaning that

$$
S \cup S=S .
$$

- However, for bags, if \boldsymbol{x} appears \boldsymbol{n} times in \boldsymbol{S}, then it appears $2 n$ times in $S \cup S$.
- Thus $S \cup S$!= S in general.

Extended Algebra (for bags)

1. δ : eliminate duplicates from bags.
2. τ : sort tuples.
3. γ : grouping and aggregation.
4. Extended projection: arithmetic, duplication of columns.

Example: Duplicate Elimination

$\mathrm{R}_{1}:=\delta\left(\mathrm{R}_{2}\right)$

R_{1} consists of one copy of each tuple that appears in R_{2} one or more times.

$$
\begin{aligned}
& R=\begin{array}{llll}
A & B & \\
\hline 1 & 2 & & \\
3 & 4 & & \\
1 & 2 & & \\
\delta(R)= & & \\
& & & B \\
\hline & & 2 & \\
3 & 4
\end{array}
\end{aligned}
$$

Sorting

$\mathbf{R}_{1}:=\tau_{L}\left(\mathbf{R}_{2}\right)$

- L is a list of some of the attributes of R_{2}.
R_{1} is the list of tuples of R_{2} sorted first on the value of the first attribute on L, then on the second attribute of L, and so on.

Aggregation Operators AGG

- They apply to entire columns of a table and produce a single result.
- The most important examples:
- SUM
- AVG
- COUNT
- MIN
- MAX

Example: Aggregation

$$
R=\begin{array}{ll}
A & B \\
\hline 1 & 3 \\
3 & 4 \\
3 & 2
\end{array}
$$

$\operatorname{SUM}(\mathrm{A})=7$
$\operatorname{COUNT}(\mathrm{A})=3$
$\operatorname{MAX}(B)=4$
$\operatorname{MIN}(B)=2$
AVG(B) $=3$

Grouping Operator

$\mathbf{R}_{1}:=\gamma_{L}\left(\mathbf{R}_{\mathbf{2}}\right)$

L is a list of elements that are either:

1. Individual (grouping) attributes.
2. $A G G(A)$, where $A G G$ is one of the aggregation operators and A is an attribute.

Example: Grouping/Aggregation

$$
R=\begin{array}{ccc}
A & B & C \\
1 & 2 & 3 \\
4 & 5 & 6 \\
1 & 2 & 5
\end{array}
$$

$\gamma_{A, B, \operatorname{AVG}(C)}(\mathrm{R})=$??

First, group R :
Then, average C within groups:

A	B	C
$\mathbf{1}$	2	3
1	2	5
$\mathbf{4}$	5	6

$\gamma_{L}(R)$ - Formally

- Group R according to all the grouping attributes on list L. - That is, form one group for each distinct list of values for those attributes in \boldsymbol{R}.
- Within each group, compute $\operatorname{AGG}(A)$ for each aggregation on list L.
- Result has grouping attributes and aggregations as attributes: One tuple for each list of values for the grouping attributes and their group's aggregations.

Example: Grouping/Aggregation

StarsIn(title, year, star_name)

- For each star who has appeared in at least three movies give the earliest year in which he or she appeared.
- First we group, using starName as a grouping attribute.
- Then, we compute the MIN(year) for each group.
- Also, we need to compute the COUNT(title) aggregate for each group, for filtering out those stars with less than three movies.
- $\pi_{\text {star_name,minYear }}\left(\sigma_{\text {ctTitle } \geq 3}\left(\gamma_{\text {starName,MIN(year) }) \rightarrow \text { minYear,COUNT(title) } \rightarrow \text { ctTitle }}(\right.\right.$ StarsIn $\left.\left.)\right)\right)$

Example: Extended Projection

Using the same π_{L} operator, we allow the list L to contain arbitrary expressions involving attributes, for example:

1. Arithmetic on attributes, e.g., $A+B$.
2. Duplicate occurrences of the same attribute.

$$
R=\begin{array}{cc}
A & B \\
1 & 2 \\
3 & 4
\end{array}
$$

$$
\pi_{A+B \rightarrow C, A \rightarrow A 1, A \rightarrow A 2}(R)=\begin{array}{ccc}
C & A 1 & A 2 \\
3 & 1 & 1 \\
7 & 3 & 3
\end{array}
$$

