W4. Relational algebra exercises

Part 1. RA Expressions

Perform following relational algebra operations on two relations R(A,B) and S(C,D). Represent the result as relation T.

R		
А	В	
3	4	
5	6	

	S	
С	D	
4	7	
1	6	

1. T = R x S

2. $T = \pi_A(R) \times S$

3. $T = \sigma_{A>C} (R \times S)$

Part 2. RA equivalencies

Given 2 relations R(A,B,C) and S(C, D, E) do the following equalities hold?

- 1. π_A (R x S) = π_A (R) x S
- 2. $\sigma_{A='c' AND E=2} (R \times S) = \sigma_{A='c'} (R) \times \sigma_{E=2} (S)$
- 3. $\pi_{A}(\sigma_{B=2}(R)) = \sigma_{B=2}(\pi_{A}(R))$

Part 3. Output size

1. Given relation R with N tuples and relation S with M tuples, what is the maximum and minimum size of the output to the following queries:

 $\sigma_{c}(R)$

- Min:
- Max:

π_A (R)

- Min:
- Max:

What if A is a key?

- Min:
- Max:
- 2. Given relation R (A,B) with N tuples and relation S(B,C) with M tuples, tell what is the maximum and minimum size of the output to the following queries

R x S

- Min:
- Max:

R ⋈ S

- Min:
- Max:
- 3. If I have a relation R with 100 tuples and a relation S with exactly 1 tuple, how many tuples will be in the result of **R** left outer join S?
 - A. At least 100, but could be more
 - B. Could be any number between 0 and 100 inclusive
 - C. 0
 - D. 1
 - E. Exactly 100

Part 4. Complex RA queries

movie (<u>title</u>, <u>year</u>, length, incolor, studio, producer_cert)
star (<u>name</u>, address, gender, birthdate)
starsIn (<u>movie_title</u>, <u>movie_year</u>, <u>star_name</u>)
movieexec (<u>name</u>, address, cert, net_worth)
studio (<u>name</u>, president_cert)

Find all name pairs in form (movie star, movie producer) that live at the same address. The same person can be both a star and a producer. Now, try to eliminate palindrome pairs: leave (a,b) but not both (a,b) and (b,a). (for solutions see slides on RA queries)