CMPT 321 FALL 2017

Normalization

Summary

By Marina Barsky

Normal forms –testing for normalization

- The database is normalized when all its tables are normalized
- There are rules to test each relation normal forms:
 - 1NF
 - 2NF
 - 3NF
 - BCNF
 - 4NF
 - 5NF
- In most cases, the relation is normalized if it is in **3NF**

Students: in 1NF!

Students (ID, Name, Course, Grade)

Students					
ID	Course	Name	Grade		
1	Databases	Bob	In pr		
2	НСІ	Maria	А		
3	Python	John	В		
4	НСІ	Tom	А		
2	Algorithms	Maria	А		
1	НСІ	Bob	В		
2	Python	Maria	А		

Students extended: problems

Students (ID, Course, Name, Phone, Major, Professor, Grade)

Students						
ID	Course	Name	Phone	Major	Prof	Grade
1	Databases	Bob	211-2112	CSCI	Dr. Monk	In pr
2	НСІ	Maria	344-3344	BIOL	Dr. Pooh	А
3	Python	John	500-5005	MATH	Dr. Patel	В
4	НСІ	Tom	601-6778	PHYS	Dr. Pooh	А
2	Algorithms	Maria	344-3344	BIOL	Dr. Monk	А
1	НСІ	Bob	211-2112	CSCI	Dr. Pooh	В
2	Python	Maria	344-3344	BIOL	Dr. Patel	А

- Redundancy
- Insertion anomaly
- Deletion anomaly
- Update anomaly

						Ра	rtia	dependen	cies
Stı	ude	nts	s ir	n 2N	١F			ID COURSE	
					Grade	S	(Composite ke	y
				ID	Course	Grade			
				1	Databases	In pr			
St	udents			2	нсі	A		Cour	ses
Name	Phone	Major		3	Python	В		Course	Prof

4

2

1

2

HCI

HCI

Python

Algorithms

А

А

В

Α

ID		
		MAJOR
COUDEE		
COURSE		→ PROF
Composite k		、
Composite K	c y	GRADE
Coui	ses	
Course	Prof	
	1101	
Databases	Dr. Monk	
Databases HCI	-	
	Dr. Monk	
нсі	Dr. Monk Dr. Pooh	

NAME

PHONE

ID Name Phone Major Bob 211-2112 CSCI 1 344-3344 BIOL Maria 2 John 500-5005 MATH 3 601-6778 PHYS 4 Tom

Students (ID, Name, Phone, Major)

Courses (Course, Prof)

Grades (ID, Course, Grade)

Students relation: new information

Students (ID, Name, Phone, Major, Department)

Students						
ID	Name	Phone	Major	Department		
1	Bob	211-2112	CSCI	Computer Science		
2	Maria	344-3344	BIOL	Life Sciences		
3	John	500-5005	MATH	Mathematics and Statistics		
4	Tom	601-6778	PHYS	Physics		
5	Andrew	222-2341	CSCI	Computer Science		
6	Ann	544-6778	STAT	Mathematics and Statistics		

- Redundancy
- Update anomalies

Major \rightarrow Department

Transitive dependency

Students in 3NF

Students

Phone

211-2112

344-3344

500-5005

601-6778

222-2341

544-6778

ID

1

2

3

4

5

6

Name

Bob

Maria

John

Tom

Ann

Andrew

Students (<u>ID</u>, Name, Phone, Major) MajorsOffered (<u>Major</u>, Department)

Major

CSCI

BIOL

MATH

PHYS

CSCI

STAT

Boyce-Codd normal form - BCNF

- Relation is in 3NF
- All attributes depend on the key, full key and nothing but the key

Professor workload: in BCNF?

	Profes		
Prof	Department	Head	WorkLoad
Dr. Monk	CSCI	Prof. Ming	30%
Dr. Pooh	MATH	Prof. Doe	70%
Dr. Patel	PHYS	Prof. Bond	100%
Dr. Pooh	CSCI	Prof. Ming	30%
Dr. Monk	BIOL	Prof. Bond	30%
Dr. Monk	MATH	Prof. Doe	40%

Department \rightarrow Head Prof, Department \rightarrow Workload

Functional dependency diagram

Functional dependency diagram

 BCNF violation: part of two candidate keys depends on another part

Professors in BCNF

Professors					
Prof	Department	WorkLoad			
Dr. Monk	CSCI	30%			
Dr. Pooh	МАТН	70%			
Dr. Patel	PHYS	100%			
Dr. Pooh	CSCI	30%			
Dr. Monk	BIOL	30%			
Dr. Monk	MATH	40%			

Professors (<u>Prof</u>, <u>Department</u>, Workload) Department (<u>Department</u>, Head)

Two overlapping composite candidate keys BCNF violation: part of two candidate keys depends on another part

Department				
Department Head				
CSCI	Prof. Ming			
MATH	Prof. Doe			
PHYS Prof. Bond				
BIOL Prof. Bond				

For full description of normal forms

• Read this article

Kent, W. (1983) <u>A Simple Guide to Five Normal Forms in Relational Database Theory</u>

BCNF decomposition: Step 1: for each FD compute closure

- Convert all FDs to LHS-singleton FD's using splitting rule
- **Basis**: $Y^+ = Y$.
- Induction: Look for an FD's left side X that is a subset of the current Y⁺. If the FD is X → A, add A to Y⁺.

Example: computing closure: 1/4

• Given:

R(A,B,C,D) with FD's $AB \rightarrow C, B \rightarrow D, CD \rightarrow A, AD \rightarrow B$.

- Computing closure for AB: {AB}⁺ = {ABC} (from AB \rightarrow C) {ABC}⁺ = {ABCD} (from B \rightarrow D)
- Answer:

{AB}⁺ = **{ABCD}**

Example: computing closure: 2/4

• Given:

R(A,B,C,D) with FD's $AB \rightarrow C, B \rightarrow D, CD \rightarrow A, AD \rightarrow B$.

• Computing closure for **B**: $\{B\}^+ = \{BD\} \text{ (from } B \rightarrow D)$

• Answer:

 ${B}^{+} = {BD}$

Example: computing closure: 3/4

• Given:

R(A,B,C,D) with FD's $AB \rightarrow C, B \rightarrow D, CD \rightarrow A, AD \rightarrow B$.

• Computing closure for CD: $\{CD\}^+ = \{CDA\} \text{ (from } CD \rightarrow A) \\ \{CDA\}^+ = \{CDAB\} \text{ (from } AD \rightarrow B) \}$

• Answer:

{CD}⁺ = **{ABCD}**

Example: computing closure: 4/4

• Given:

R(A,B,C,D) with FD's $AB \rightarrow C, B \rightarrow D, CD \rightarrow A, AD \rightarrow B$.

• Computing closure for AD: ${AD}^+ = {ADB} (from AD \rightarrow B)$ ${ADB}^+ = {ADBC} (from AB \rightarrow C)$

• Answer:

 $\{AD\}^+ = \{ABCD\}$

BCNF decomposition: step 2 – identify violations

• Given:

R(A,B,C,D) with FD's $AB \rightarrow C, B \rightarrow D, CD \rightarrow A, AD \rightarrow B$.

- {AB}⁺ = {ABCD}
- $\{B\}^+ = \{BD\}$ \longrightarrow $B \rightarrow D BCNF violation! B is not a key$
- {CD}⁺ = {ABCD}
- {AD}⁺ = {ABCD}

BCNF decomposition: step 3 - decompose

• Replace *R* by relations with schemas:

1.
$$R_1 = X^+$$

2. $R_2 = R - (X^+ - X)$

BCNF decomposition: step 3 – decompose

• Given:

R(A,B,C,D) with FD's $AB \rightarrow C$, $B \rightarrow D$, $CD \rightarrow A$, $AD \rightarrow B$.

- {AB}⁺ = {ABCD}
- {B}⁺ = {BD}
- {CD}⁺ = {ABCD}
- {AD}⁺ = {ABCD}

R(A,B,C,D)

Desired properties of normalization: after decomposition

- No redundancies and anomalies: guaranteed
- Recoverability of information: if decompose according to functional dependencies – this is guaranteed (Chase test)
- Preservation of original FD's in decomposed relations

BCNF decomposition which does not preserve FD's

- There is one structure of FD's that causes trouble when we decompose.
- $AB \rightarrow C$ and $C \rightarrow B$
- There are two keys, {*A*,*B*} and {*A*,*C*}
- $C \rightarrow B$ is a BCNF violation, so we must decompose into AC, BC
- The difference here that a violating FD C → B has B in RHS, and B is a part of a primary key
- An attribute that is a part of some key is called a *prime*

Example: BCNF gone wrong

- Given R (client, bank, banker) with FD's:
 {client, bank} → banker {client, bank} is the key
 banker → bank violation
- We decompose into R1 (banker, bank)
- R2 (client, banker)
- However the original FD {client, bank} → banker is lost in this decomposition!

Example continued: at the moment of decomposition

- R (client, bank, banker)
- FD's:

{client, bank} \rightarrow banker banker \rightarrow bank ${\rm client, bank} → {\rm banker}$ banker → bank

	R	
client	bank	banker
А	1	Х
А	2	Y
В	1	Х

Decomposition:
R1 (banker, bank)
R2 (client, banker)

banker $ ightarrow$ bank		No FD's	i
R1		R	1
banker	bank	client	banker
Х	1	А	Х
Y	2	А	Y
		В	Х

Example continued: lossless decomposition

No FD's

The decomposition is lossless – requirement 2 is satisfied

Example continued: no original constraint {client, bank} -> banker

banker → bank R1 banker bank X 1 Y 1 The only requirement is that banker uniquely identifies bank No FD'sClientbankerAXAYBX

Now we can insert into R1 and R2 without the original constraints, and that will allow to insert invalid values

Example continued: no original constraint {client, bank} -> banker

banker \rightarrow bank **R2 R1** client banker banker bank Α Х \bowtie Х 1 Υ Α γ 1 Χ B

No FD's

{client, bank} \rightarrow banker banker \rightarrow bank

Invalid join! Tuple (A, 1, Y) should have been prevented by the original FD {client, bank} → banker

	R	
client	bank	banker
А	1	Х
А	1	Y
В	1	Х

Relaxing normalization requirements: 3NF

- 3rd Normal Form (3NF) modifies the BCNF condition so we do not have to decompose in this problematic situation
- An attribute is *prime* if it is a member of any key.
- X → A violates 3NF if and only if X is not a superkey, and also A is not prime

Example: 3NF

- $AB \rightarrow C$ and $C \rightarrow B$
- In our situation with FD's $AB \rightarrow C$ and $C \rightarrow B$, we have key AB
- Thus *A* and *B* are each prime.
- Although $C \rightarrow B$ violates BCNF, it **does not violate 3NF**
- So no decomposition is performed, and all the original FD's are preserved

Desired properties of normalization: after decomposition: BCNF

- No redundancies and anomalies
- Recoverability of information
- Preservation of original FD's

Desired properties of normalization: after decomposition: 3NF

- No redundancies and anomalies
- Recoverability of information
- Preservation of original FD's

Relationship between normal forms

