Normalization

Summary

By Marina Barsky

Normal forms -testing for normalization

- The database is normalized when all its tables are normalized
- There are rules to test each relation - normal forms:
- 1NF
- 2NF
- 3NF
- BCNF
- 4NF
- 5NF
- In most cases, the relation is normalized if it is in 3NF

Students: in 1NF!

Students (ID, Name, Course, Grade)

Students

ID	Course	Name	Grade
$\mathbf{1}$	Databases	Bob	In pr
$\mathbf{2}$	HCl	Maria	A
$\mathbf{3}$	Python	John	B
$\mathbf{4}$	HCl	Tom	A
$\mathbf{2}$	Algorithms	Maria	A
$\mathbf{1}$	HCl	Bob	B
$\mathbf{2}$	Python	Maria	A

Students extended: problems

Students (ID, Course, Name, Phone, Major, Professor, Grade)

Students

ID	Course	Name	Phone	Major	Prof	Grade
$\mathbf{1}$	Databases	Bob	$211-2112$	CSCl	Dr. Monk	In pr
$\mathbf{2}$	HCI	Maria	$344-3344$	BIOL	Dr. Pooh	A
$\mathbf{3}$	Python	John	$500-5005$	MATH	Dr. Patel	B
$\mathbf{4}$	HCI	Tom	$601-6778$	PHYS	Dr. Pooh	A
$\mathbf{2}$	Algorithms	Maria	$344-3344$	BIOL	Dr. Monk	A
$\mathbf{1}$	HCI	Bob	$211-2112$	CSCl	Dr. Pooh	B
$\mathbf{2}$	Python	Maria	$344-3344$	BIOL	Dr. Patel	A

- Redundancy
- Insertion anomaly
- Deletion anomaly
- Update anomaly

Students (ID, Name, Phone, Major)
Courses (Course, Prof)
Grades (ID, Course, Grade)

Students relation: new information

Students (ID, Name, Phone, Major, Department)

Students				
ID	Name	Phone	Major	Department
$\mathbf{1}$	Bob	$211-2112$	CSCl	Computer Science
$\mathbf{2}$	Maria	$344-3344$	BIOL	Life Sciences
$\mathbf{3}$	John	$500-5005$	MATH	Mathematics and Statistics
$\mathbf{4}$	Tom	$601-6778$	PHYS	Physics
$\mathbf{5}$	Andrew	$222-2341$	CSCI	Computer Science
$\mathbf{6}$	Ann	$544-6778$	STAT	Mathematics and Statistics

- Redundancy
- Update anomalies

Major \rightarrow Department

Students in 3NF

Students

ID	Name	Phone	Major
$\mathbf{1}$	Bob	$211-2112$	CSCI
$\mathbf{2}$	Maria	$344-3344$	BIOL
$\mathbf{3}$	John	$500-5005$	MATH
$\mathbf{4}$	Tom	$601-6778$	PHYS
$\mathbf{5}$	Andrew	$222-2341$	CSCI
$\mathbf{6}$	Ann	$544-6778$	STAT

Students (ID, Name, Phone, Major)
MajorsOffered (Major, Department)

Boyce-Codd normal form - BCNF

- Relation is in 3NF
- All attributes depend on the key, full key and nothing but the key

Professor workload: in BCNF?

	Professors		
Prof	Department	Head	WorkLoad
Dr. Monk	CSCI	Prof. Ming	30%
Dr. Pooh	MATH	Prof. Doe	70%
Dr. Patel	PHYS	Prof. Bond	100%
Dr. Pooh	CSCI	Prof. Ming	30%
Dr. Monk	BIOL	Prof. Bond	30%
Dr. Monk	MATH	Prof. Doe	40%

Department \rightarrow Head
Prof, Department \rightarrow Workload

Functional dependency diagram

Two overlapping
composite
candidate keys

Functional dependency diagram

- BCNF violation: part of two candidate keys depends on another part

Two overlapping
composite
candidate keys

Professors in BCNF

Professors		
Prof	Department	WorkLoad
Dr. Monk	CSCI	30%
Dr. Pooh	MATH	70%
Dr. Patel	PHYS	100%
Dr. Pooh	CSCI	30%
Dr. Monk	BIOL	30%
Dr. Monk	MATH	40%

Two overlapping composite candidate keys

WORKLOAD

BCNF violation: part of two candidate keys depends on another part

Professors (Prof, Department, Workload) Department (Department, Head)

Department	
Department	Head
CSCI	Prof. Ming
MATH	Prof. Doe
PHYS	Prof. Bond
BIOL	Prof. Bond

For full description of normal forms

- Read this article

Kent, W. (1983) A Simple Guide to Five Normal Forms in Relational Database Theory

BCNF decomposition: Step 1: for each FD compute closure

- Convert all FDs to LHS-singleton FD's using splitting rule
- Basis: $Y^{+}=Y$.
- Induction: Look for an FD's left side X that is a subset of the current Y^{+}. If the FD is $X \rightarrow A$, add A to Y^{+}.

Example: computing closure: 1/4

- Given:
$R(A, B, C, D)$ with FD's $A B \rightarrow C, B \rightarrow D, C D \rightarrow A, A D \rightarrow B$.
- Computing closure for AB :
$\{A B\}^{+}=\{A B C\}$ (from $A B \rightarrow C$)
$\{A B C\}^{+}=\{A B C D\}($ from $B \rightarrow D)$
- Answer:
$\{A B\}^{+}=\{A B C D\}$

Example: computing closure: 2/4

- Given:
$R(A, B, C, D)$ with FD's $A B \rightarrow C, B \rightarrow D, C D \rightarrow A, A D \rightarrow B$.
- Computing closure for \mathbf{B} :
$\{B\}^{+}=\{B D\}($ from $B \rightarrow D)$
- Answer:
$\{B\}^{+}=\{B D\}$

Example: computing closure: 3/4

- Given:
$R(A, B, C, D)$ with FD's $A B \rightarrow C, B \rightarrow D, C D \rightarrow A, A D \rightarrow B$.
- Computing closure for CD:
$\{C D\}^{+}=\{C D A\}$ (from $C D \rightarrow A$)
$\{C D A\}+=\{C D A B\}($ from $A D \rightarrow B)$
- Answer:
$\{C D\}^{+}=\{A B C D\}$

Example: computing closure: 4/4

- Given:
$R(A, B, C, D)$ with FD's $A B \rightarrow C, B \rightarrow D, C D \rightarrow A, A D \rightarrow B$.
- Computing closure for AD:
$\{A D\}^{+}=\{A D B\}$ (from $A D \rightarrow B$)
$\{A D B\}+=\{A D B C\}($ from $A B \rightarrow C)$
- Answer:
$\{A D\}^{+}=\{A B C D\}$

BCNF decomposition: step 2 identify violations

- Given: $R(A, B, C, D)$ with FD's $A B \rightarrow C, B \rightarrow D, C D \rightarrow A, A D \rightarrow B$.
- $\{A B\}^{+}=\{A B C D\}$
- $\{B\}^{+}=\{B D\}$
$B \rightarrow D$ BCNF violation! B is not a key
- $\{C D\}^{+}=\{A B C D\}$
- $\{A D\}^{+}=\{A B C D\}$

BCNF decomposition: step 3 decompose

- Replace R by relations with schemas:

1. $R_{1}=X^{+}$
2. $R_{2}=R-\left(X^{+}-X\right)$

BCNF decomposition: step 3 decompose

- Given:
$R(A, B, C, D)$ with FD's $A B \rightarrow C, B \rightarrow D, C D \rightarrow A, A D \rightarrow B$.
- $\{A B\}^{+}=\{A B C D\}$
- $\{B\}^{+}=\{B D\}$
- $\{C D\}^{+}=\{A B C D\}$
- $\{A D\}^{+}=\{A B C D\}$
$R(A, B, C, D)$
R1(B,D)
R2(A,B,C)

Desired properties of normalization: after decomposition

- No redundancies and anomalies: guaranteed
- Recoverability of information: if decompose according to functional dependencies - this is guaranteed (Chase test)
- Preservation of original FD's in decomposed relations

BCNF decomposition which does not preserve FD's

- There is one structure of FD's that causes trouble when we decompose.
$A B \rightarrow C$ and $C \rightarrow B$
- There are two keys, $\{A, B\}$ and $\{A, C\}$
- $C \rightarrow B$ is a $B C N F$ violation, so we must decompose into $A C$, BC
- The difference here that a violating FD $C \rightarrow B$ has B in RHS, and B is a part of a primary key
- An attribute that is a part of some key is called a prime

Example: BCNF gone wrong

- Given R (client, bank, banker) with FD's: \{client, bank\} \rightarrow banker - \{client, bank\} is the key banker \rightarrow bank - violation
- We decompose into

R1 (banker, bank)
R2 (client, banker)

- However the original FD \{client, bank\} \rightarrow banker is lost in this decomposition!

Example continued: at the

 moment of decomposition\{client, bank\} \rightarrow banker

- R (client, bank, banker)
- FD's:
\{client, bank\} \rightarrow banker banker \rightarrow bank
banker \rightarrow bank

R		
client	bank	banker
A	1	X
A	2	Y
B	1	X

- Decomposition:

R1 (banker, bank)
R2 (client, banker)

banker \rightarrow bank	
R1	
banker	bank
X	1
Y	2

No FD's

R1	
client	banker
A	X
A	Y
B	X

Example continued: lossless decomposition

Example continued: no original constraint \{client, bank\} \rightarrow banker

	banker \rightarrow bank	
		R1
	banker	bank
	X	1
		1

No FD's

R2	
client	banker
A	X
A	Y
B	X

Now we can insert into R1 and R2 without the original constraints, and that will allow to insert invalid values

Example continued: no original constraint \{client, bank\} \rightarrow banker

banker \rightarrow bank	
R1	
banker	bank
X	1
Y	1

No FD's

R2	
client	banker
A	X
A	Y
B	X

Invalid join! Tuple (A, 1, Y) should have been prevented by the original FD \{client, bank\} \rightarrow banker
\{client, bank\} \rightarrow banker
banker \rightarrow bank

R		
client	bank	banker
A	1	X
A	1	Y
B	1	X

Relaxing normalization requirements: 3NF

- $3^{\text {rd }}$ Normal Form (3NF) modifies the BCNF condition so we do not have to decompose in this problematic situation
- An attribute is prime if it is a member of any key.
- $X \rightarrow A$ violates 3NF if and only if X is not a superkey, and also A is not prime

Example: 3NF

- $A B \rightarrow C$ and $C \rightarrow B$
- In our situation with FD's $A B \rightarrow C$ and $C \rightarrow B$, we have key $A B$
- Thus A and B are each prime.
- Although $C \rightarrow B$ violates BCNF, it does not violate 3NF
- So no decomposition is performed, and all the original FD's are preserved

Desired properties of normalization: after decomposition: BCNF

- No redundancies and anomalies
- Recoverability of information
- Preservation of original FD's

Desired properties of normalization: after decomposition: 3NF

- No redundancies and anomalies
- Recoverability of information
- Preservation of original FD's

Relationship between normal forms

