CMPT 321 Fall 2017

Relational algebra queries

review

By Marina Barsky

General

- π followed by comma-separated list of columns (dimensions) to project into
- σ followed by Boolean conditions, multiple conditions connected with Boolean operators: and, or, not
- Boolean condition requiring for value in the same column to be both A and B, cannot be performed with selection σ – we look at each row in turn and we cannot know if both A and B occur in this column

Three special methods

- 1. Finding min/max
- 2. Every
- 3. At least k

Suppliers (<u>sname</u>, address) Parts (<u>pname</u>, color) Catalog (<u>sname</u>, <u>pname</u>, cost) Substitute (<u>pname</u>, <u>substitute</u>)

Finding min/max: find part(s) with a minimum price

- There cannot be *min* operator in RA: we look at each row one at a time, so there is no way to compare values in different rows.
- Our only tool is Cartesian Product create a new table where the answer will be clear <u>from a single row</u>...

Finding min/max:

find part(s) with a minimum price

Cata	alog	
pname	price	
А	1	
В	3	
С	2	

Catalog1				
pname1	price1			
А	1			
А	3			
В	2			

Suppliers (<u>sname</u>, address) Parts (<u>pname</u>, color) Catalog (<u>sname</u>, <u>pname</u>, cost) Substitute (<u>pname</u>, <u>substitute</u>)

Catalog1 (pname1, price1) = ρ (π _{pname,price}(Catalog))

pname	price	pname1	price1	
A	1	А	1	
A	1	В	3	
A	1	С	2	
В	3	А	1	
В	3	В	3	
В	3	С	2	
ſ	2	А	1	
С	2	В	3	
С	2	С	2	

Product = Catalog x Catalog1

Finding rows where *pname* cannot be min – as it is > than some other product's *price1*

Eliminate = $\pi_{\text{pname}} (\sigma_{\text{price>price1}} (\text{Product}))$

Min = π_{pname} (Product) - Eliminate

Every color: find parts that are offered in every color

- Given set of all colors (say, there are only 2: red and green), find parts that appear in every color.
- If part A appears in green but not in red, it is not part of the answer. If B appears in both green and red, it is part of the answer.
- The parts that are outside of the requirements (say, B also can be non-colored) are of no interest to us.
- Again, we can read only a single row at a time, and when we see part B in red, there is no way to know that we have seen it also in green

Finding parts in every color

Suppliers (<u>sname</u>, address) Parts (<u>pname</u>, color) Catalog (<u>sname</u>, <u>pname</u>, cost) Substitute (<u>pname</u>, <u>substitute</u>)

The only way to discriminate between parts of type A and of type B is to find parts of type A

At least k: find parts that are offered in at least k colors

• Again, we need to bring all the information into a single row by performing k Cartesian products of table with itself

Finding parts in at least 2 colors

