Relational algebra queries

review

By Marina Barsky

General

- π followed by comma-separated list of columns (dimensions) to project into
- σ followed by Boolean conditions, multiple conditions connected with Boolean operators: and, or, not
- Boolean condition requiring for value in the same column to be both A and B, cannot be performed with selection σ - we look at each row in turn and we cannot know if both A and B occur in this column

Three special methods

1. Finding \min / \max
2. Every
3. At least k

Suppliers (sname, address)
Parts (pname, color)
Catalog (sname, pname, cost)
Substitute (pname, substitute)

Finding min/max:

find part(s) with a minimum price

- There cannot be min operator in RA: we look at each row one at a time, so there is no way to compare values in different rows.
- Our only tool is Cartesian Product - create a new table where the answer will be clear from a single row...

Finding min/max:

find part(s) with a minimum price

Catalog	
pname	price
A	1
B	3
C	2

\times| Catalog1 | |
| :--- | :--- |
| pname1 | price1 |
| A | 1 |
| A | 3 |
| B | 2 |

Suppliers (sname, address)
Parts (pname, color)
Catalog (sname, pname, cost)
Substitute (pname, substitute)
Catalog1 $($ pname 1, price 1$)=\rho\left(\pi_{\text {pname, price }}(\right.$ Catalog $\left.)\right)$

pname	price	pname1	price1
A	1	A	1
A	1	B	3
A	1	C	2
B	3	A	1
B	3	B	3
B	3	C	2
C	2	A	1
C	2	B	3
C	2	C	2

Product $=$ Catalog \times Catalog1
Finding rows where pname cannot be min - as it is > than some other product's price1

Eliminate $=\pi_{\text {pname }}\left(\sigma_{\text {price>price1 }}(\right.$ Product $\left.)\right)$

Catalog	
A	
B	
C	B

Min $=\pi_{\text {pname }}($ Product $)$ - Eliminate

Every color: find parts that are offered in every color

- Given set of all colors (say, there are only 2 : red and green), find parts that appear in every color.
- If part A appears in green but not in red, it is not part of the answer. If B appears in both green and red, it is part of the answer.
- The parts that are outside of the requirements (say, B also can be non-colored) are of no interest to us.
- Again, we can read only a single row at a time, and when we see part B in red, there is no way to know that we have seen it also in green

Finding parts in every color

PartsOfinterest	
pname	color
A	red
B	red
B	green

Colors (set)
color
red
green
Colors $=\pi$ color
(Parts)

Suppliers (sname, address)
Parts (pname, color)
Catalog (sname, pname, cost)
Substitute (pname, substitute)

PartsOfInterest $=\pi_{\text {pname, color }}($ Parts \bowtie Colors $)$
The only way to discriminate between parts of type A and of type B is to find parts of type A

At least k : find parts that are offered in at least k colors

- Again, we need to bring all the information into a single row by performing k Cartesian products of table with itself

Finding parts in at least 2 colors

Parts	
pname	color
A	green
A	red
B	red

Parts1	
pname1	color1
A	green
A	red
B	red

Suppliers (sname, address)
Parts (pname, color)
Catalog (sname, pname, cost)
Substitute (pname, substitute)

pname	color	pname1	color1
A Product $=$ Parts \times Parts1			

Finding rows where pname is the same, but color and color1 are different

AtLeast2
A

AtLeast2 $=\pi_{\text {pname }}\left(\sigma_{\text {pname=pname1 AND ccolor<color1 }}\right.$ (Product))

