
SQL queries

review

By Marina Barsky

CMPT 321
Fall 2017

SQL makes these queries simpler

1. Finding min/max

2. At least k

3. Every

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

Finding min/max:
find part(s) with a minimum price

SELECT MIN(cost)

FROM Catalog;

• It is easy to implement full-table aggregates using a single
accumulator variable and scanning the table by comparing
value in each row to value of the accumulator

SELECT pid FROM catalog

WHERE cost = (SELECT MIN(cost) FROM catalog);

• From here it is easy to find part names

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

Groups and aggregates

• Finding average cost for each part
SELECT pid, AVERAGE (cost)
FROM catalog
GROUP BY pid;

• Finding min cost for each part
SELECT pid, MIN (cost)
FROM catalog
GROUP BY pid;

• Finding number of different colors for each part
SELECT pid, COUNT (color)
FROM parts
GROUP BY pid;

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

At least k:
find part(s) offered in at least 4 colors

• Use GROUP BY and HAVING

SELECT pid, COUNT (color)

FROM parts

GROUP BY pid

HAVING COUNT (color) >=4;

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

Every color: find parts that are offered in every color

• Idea is the same as in Relational Algebra.

• We can use a subquery with NOT EXISTS:

CREATE VIEW product AS
SELECT pid, color
FROM
(SELECT pid FROM parts),
(SELECT DISTINCT color FROM parts)

CREATE VIEW notevery AS
SELECT * FROM product
EXCEPT SELECT pid, color FROM parts;

SELECT pid FROM parts outer
WHERE NOT EXISTS
(SELECT 1 FROM notEvery inner
WHERE inner.pid=outer.pid);

Cartesian Product – when no
join condition is specified

For each pid, execute
subquery and find if the

result is empty

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

5 more queries of interest

1. Top k

2. Expanding self-relationships

3. Above/below average

4. Mode (most frequent value)

5. Custom groups

Top 3: find top 3 suppliers
based on the total number of distinct parts offered

• First, create groups with counts

• Then, use ORDER BY and LIMIT

CREATE VIEW supplier_groups AS

SELECT sid, COUNT(pid) part_counts

FROM catalog

GROUP BY sid;

SELECT sid FROM supplier_groups

ORDER BY part_counts DESC

LIMIT 3;

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

Self-relationships: for each part of supplier A,
give a substitute (pname, sname) pair: 1/3

--find all pids for supplier A

CREATE VIEW sup_A_parts AS

SELECT pid

FROM Catalog NATURAL JOIN Suppliers

WHERE sname = ‘A’;

--find all subst part ids for pids in the view above

CREATE VIEW A_subst AS SELECT A.pid, S.subst_id

FROM sup_A_parts A NATURAL JOIN substitute S;
A_SUBST

pid Subst_id

1 2

1 3

2 1

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

Self-relationships: for each part of supplier A,
give a substitute (pname, sname) pair: 2/3

--Expand pids with pname

CREATE VIEW pid_names AS

SELECT pid, pname

FROM parts p JOIN A_SUBST A

ON p.pid = A.pid;

--Expand subst_ids with pname

CREATE VIEW substid_names AS

SELECT subst_id, pname as subst_name

FROM parts p JOIN A_SUBST A

ON p.pid = A.subst_id;

Pid_names

pid Subst_id pname

1 2 A

1 3 A

2 1 B

Subst_names

pid Subst_id Subst_name

1 2 B

1 3 C

2 1 A

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

Self-relationships: for each part of supplier A,
give a substitute (pname, sname) pair: 2/3

--finally, join both to get

---a full list

SELECT pname, subst_name

FROM pid_names p, subst_names s

WHERE p.id = s.id

AND p.subst_id = s.subst_id

ORDER BY pname;

Of course this all can be done with a single join,

but the main thing is that pname has to be

renamed for the substitute part name

Pid_names

pid Subst_id pname

1 2 A

1 3 A

2 1 B

Subst_names

pid Subst_id Subst_name

1 2 B

1 3 C

2 1 A

Above average: find parts that are charged
above their average price

• First, for each part compute

its average price:

CREATE VIEW average_cost AS

SELECT pid, AVERAGE (cost) as ave

FROM catalog

GROUP BY pid;

• Now use correlated subquery to compare each part to the
corresponding average:

SELECT pid FROM catalog

WHERE cost >

(SELECT ave FROM average_cost

WHERE average_cost.pid = catalog.pid);

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

Computing mode – most frequent value:
for each part what is its mode (most frequent) color

• The value for mode should be discrete

CREATE VIEW color_counts AS
SELECT pid, color, count(*) as cnt
FROM parts p
GROUP BY pid, color;

SELECT pid, color as mode
FROM color_counts outer
WHERE cnt =
(SELECT MAX(cnt)
FROM color_counts inner
WHERE outer.pid = inner.pid);

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

Computing mode – using join:
for each part what is its mode (most frequent) color

CREATE VIEW color_counts AS
SELECT pid, color, count(*) as cnt
FROM parts
GROUP BY pid, color;

SELECT pid, color as mode
FROM color_counts c1
JOIN
(SELECT pid, MAX(cnt) max_cnt
FROM color_counts c2 GROUP BY pid)
ON c1.pid = c2.pid AND c1.cnt = c2.max_cnt;

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

Custom groups: all combinations – for each supplier
count how many parts are in each of 3 cost groups

• When there are no discrete groups,
we can create them using CASE

SELECT sid,
CASE
WHEN cost BETWEEN 0 AND 100 THEN ‘low_price’
WHEN cost BETWEEN 100 AND 200 THEN ‘ave_price’
ELSE ‘high_price’
END AS price_group,
COUNT(pid) AS num_parts
FROM catalog
GROUP BY sid, price_group
ORDER BY 1,2;

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

Custom groups: new columns– for each supplier count
how many parts are in each of 3 cost groups

• We can create a new column

for each group

SELECT sid,

SUM(CASE WHEN cost BETWEEN 0 AND 100 THEN 1
ELSE 0 END) as low_price,

SUM(CASE WHEN cost BETWEEN 100 AND 200 THEN 1
else 0 END) as ave_price,

SUM(CASE WHEN cost > 200 THEN 1 ELSE 0 END) as
high_price,

FROM catalog

GROUP BY sid;

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

