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SQL makes these queries simpler

1. Finding min/max

2. At least k

3. Every

Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)



Finding min/max: 
find part(s) with a minimum price

SELECT MIN(cost) 

FROM Catalog;

• It is easy to implement full-table aggregates using a single 
accumulator variable and scanning the table by comparing 
value in each row to value of the accumulator

SELECT pid FROM catalog

WHERE cost = (SELECT MIN(cost) FROM catalog);

• From here it is easy to find part names
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Groups and aggregates

• Finding average cost for each part
SELECT pid, AVERAGE (cost)
FROM catalog
GROUP BY pid;

• Finding min cost for each part
SELECT pid, MIN (cost)
FROM catalog
GROUP BY pid;

• Finding number of different colors for each part
SELECT pid, COUNT (color)
FROM parts
GROUP BY pid;
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At least k: 
find part(s) offered in at least 4 colors

• Use GROUP BY and HAVING

SELECT pid, COUNT (color)

FROM parts

GROUP BY pid

HAVING COUNT (color) >=4;
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Every color: find parts that are offered in every color

• Idea is the same as in Relational Algebra.

• We can use a subquery with NOT EXISTS:

CREATE VIEW product AS
SELECT pid, color
FROM
(SELECT pid FROM  parts),
(SELECT DISTINCT color FROM parts)

CREATE VIEW notevery AS
SELECT * FROM product
EXCEPT SELECT pid, color FROM parts;

SELECT pid FROM parts outer
WHERE NOT EXISTS 
(SELECT 1 FROM notEvery inner
WHERE inner.pid=outer.pid);

Cartesian Product – when no 
join condition is specified

For each pid, execute 
subquery and find if the 

result is empty
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5 more queries of interest

1. Top k

2. Expanding self-relationships

3. Above/below average

4. Mode (most frequent value)

5. Custom groups



Top 3: find top 3 suppliers 
based on the total number of distinct parts offered 

• First, create groups with counts

• Then, use ORDER BY and LIMIT

CREATE VIEW supplier_groups AS

SELECT sid, COUNT(pid) part_counts

FROM catalog

GROUP BY sid;

SELECT sid FROM supplier_groups

ORDER BY part_counts DESC

LIMIT 3;
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Self-relationships: for each part of supplier A, 
give a substitute (pname, sname) pair: 1/3

--find all pids for supplier A

CREATE VIEW sup_A_parts AS

SELECT pid

FROM Catalog NATURAL JOIN Suppliers

WHERE sname = ‘A’;

--find all subst part ids for pids in the view above

CREATE VIEW A_subst AS SELECT A.pid, S.subst_id

FROM sup_A_parts A NATURAL JOIN substitute S;
A_SUBST

pid Subst_id

1 2

1 3

2 1



Suppliers (sid, sname, address)

Parts (pid, pname, color)

Catalog (sid, pid, cost)

Substitute (pid, subst id)

Self-relationships: for each part of supplier A, 
give a substitute (pname, sname) pair: 2/3

--Expand pids with pname

CREATE VIEW pid_names AS

SELECT pid, pname

FROM parts p JOIN A_SUBST A

ON p.pid = A.pid;

--Expand subst_ids with pname

CREATE VIEW substid_names AS

SELECT subst_id, pname as subst_name

FROM parts p JOIN A_SUBST A

ON p.pid = A.subst_id;

Pid_names

pid Subst_id pname

1 2 A

1 3 A

2 1 B

Subst_names

pid Subst_id Subst_name

1 2 B

1 3 C

2 1 A
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Self-relationships: for each part of supplier A, 
give a substitute (pname, sname) pair: 2/3

--finally, join both to get 

---a full list

SELECT pname, subst_name

FROM pid_names p, subst_names s

WHERE p.id = s.id

AND p.subst_id = s.subst_id

ORDER BY pname;

Of course this all can be done with a single join,

but the main thing is that pname has to be

renamed for the substitute part name

Pid_names

pid Subst_id pname

1 2 A

1 3 A

2 1 B

Subst_names

pid Subst_id Subst_name

1 2 B

1 3 C

2 1 A



Above average: find parts that are charged 
above their average price

• First, for each part compute 

its average price:

CREATE VIEW average_cost AS

SELECT pid, AVERAGE (cost) as ave

FROM catalog

GROUP BY pid;

• Now use correlated subquery to compare each part to the 
corresponding average:

SELECT pid FROM catalog 

WHERE cost > 

(SELECT ave FROM average_cost

WHERE average_cost.pid = catalog.pid);
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Computing mode – most frequent value: 
for each part what is its mode (most frequent) color

• The value for mode should be discrete

CREATE VIEW color_counts AS
SELECT  pid,  color,  count(*) as cnt
FROM parts p
GROUP BY pid, color;

SELECT  pid, color as mode
FROM color_counts outer
WHERE cnt = 
(SELECT MAX(cnt) 
FROM color_counts inner 
WHERE outer.pid = inner.pid);
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Computing mode – using join: 
for each part what is its mode (most frequent) color

CREATE VIEW color_counts AS
SELECT  pid,  color,  count(*) as cnt
FROM parts
GROUP BY pid, color;

SELECT pid, color as mode
FROM color_counts c1
JOIN
(SELECT pid, MAX(cnt) max_cnt
FROM color_counts c2 GROUP BY pid) 
ON c1.pid = c2.pid AND c1.cnt = c2.max_cnt;
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Custom groups: all combinations – for each supplier 
count how many parts are in each of 3 cost groups

• When there are no discrete groups, 
we can create them using CASE

SELECT sid, 
CASE 
WHEN cost BETWEEN 0 AND 100 THEN ‘low_price’
WHEN cost BETWEEN 100 AND 200 THEN ‘ave_price’
ELSE ‘high_price’  
END AS price_group,
COUNT(pid) AS num_parts
FROM catalog
GROUP BY sid, price_group
ORDER BY 1,2;
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Custom groups: new columns– for each supplier count 
how many parts are in each of 3 cost groups

• We can create a new column 

for each group

SELECT sid, 

SUM(CASE WHEN cost BETWEEN 0 AND 100 THEN 1 
ELSE 0 END) as low_price,

SUM(CASE WHEN cost BETWEEN 100 AND 200 THEN 1 
else 0 END) as ave_price,

SUM(CASE WHEN cost > 200 THEN 1 ELSE 0 END) as 
high_price, 

FROM catalog

GROUP BY sid;
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