
Files
Lecture 05.01

By Marina Barsky

Sample data files:
emails.txt
results.txt
scores.txt
spam.txt

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/data/emails.txt
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/data/results.txt
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/data/scores.txt
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/data/spam.txt

We live in time of “Big Data”

• We aggressively acquire and keep data forever

• We feel real freedom when all data is available

• Implications for our live are enormous

• We use data for purposes different than it was primarily
collected

• Question: How do we keep data forever?

Input

and Output

Devices

Central

Processing

Unit

Main

Memory

Secondary

Memory

We load our
programs
here

OS software

Next
instruction ?

Stored-program computer

How to store inputs and outputs
permanently?

Magnetic disks

Solid State Disks

https://youtu.be/TvkIi6NVnqY

https://youtu.be/TvkIi6NVnqY

Simplify access to data on disk
with Python
• We operate on files using an abstraction of type File

• File abstraction in Python knows how to:

• Open a file (establish connection to a file on disk)

• Read the entire file into a string

• Read the file line-by-line

• Close the file (disconnect from file on disk)

• Create a new file

• Write to a file

Opening a file

• Before we can read the contents of the file from disk into
main memory, we must tell Python which file we are going
to work with and what we will be doing with the file

• This is done with the open() function

• open() returns a “file handle” - a variable used to perform
operations on the file

• Similar to “File -> Open” in a Word Processor

Opening the file: syntax

handle = open(filename, mode)

• returns a handle to manipulate the file

• filename is a string

• mode is optional and should be 'r' if we are planning to read
the file and 'w' if we are going to write to the file (‘r’ is
default)

>>> f = open('spam.txt', 'r')

>>> text = f.read()

alternative… >>> text = f.read(50)

>>> f.close()

>>> text

'I like poptarts and 42 and spam.\nWill I ...

>>> wordList = text.split()

['I', 'like', 'poptarts', ...]

Reading from a file
I like poptarts and 42 and spam.
Will I get spam and poptarts for holidays?
I like spam poptarts

On disk: spam.txt

opens the file for reading and put handle to the file into variable f

reads the whole file and puts its content into string variable text

text.split() returns a list
of each "word"

closes the file (optional, but leaving files open can lead to problems...)

all the text (as one big string)

reads the next 50 bytes from the file

handle = open("test.txt", "w")

text = "Hello, world!"

handle.write(text)

handle.close()

Writing to file

opens the file for writing and calls it handle

Writes string text to file

Working with raw text files
Reading entire file content into a string

handle = open("test.txt", "w")

text = "Hello\nworld"

handle.write(text)

handle.close()

handle = open("test.txt")

content = handle.read()

print(content)

print("Total letters:", len(content))

handle.close()

Counting letters

Opening an existing file
for writing (even if you
never write anything),

erases all existing
content!

>>> stuff = 'Hello\nWorld!'

>>> stuff

'Hello\nWorld!'

>>> print(stuff)

Hello

World!

>>> stuff = 'X\nY'

>>> print(stuff)

X

Y

>>> len(stuff)

3

The newline character

• We use a special character
called the “newline” to
indicate when a line ends

• We represent it as \n in
strings

• Newline is counted as one
character - not two

• When passed to print
function – prints on different
lines

File operations are risky

• If file we try to access is not there or we cannot write to the
specified file: program blows off

• Always surround file opening code with try-except

success = True

try:

f = open('spam.txt','r')

except IOError as e:

print ("Error opening file: ", e)

success = False

if success:

text = f.read()

print (text)

Working with text files:
Splitting text
• The split() method breaks a string into a list of words.

• By default, any number of whitespace characters is
considered a word boundary.

song = "The rain in Spain..."

wds = song.split()

print(wds) ['The', 'rain', 'in', 'Spain...']

List

• If you want to use another string as a splitting boundary,
you specify additional parameter to split:

print('red; blue; green'.split(';'))

['red', ' blue', ' green']

wds = ["red", "blue", "green"]

glue = ';'

s = glue.join(wds)

print(s)

print("***".join(wds))

print("".join(wds))

Opposite to split: join
• The inverse of the split method is join().

• You choose a desired separator string, (often called the
glue) and join the list of strings with the glue between each
of the elements.

red;blue;green

red***blue***green

redbluegreen

Sanitizing text – pure words

song = "The rain in Spain..."

#replace all non-letter characters with spaces

s = ''

for x in song:

if x.isalpha()

s += x

else

s += ' '

t=s.split()

#splits across all spaces

print(t)

The rain in Spain

['The', 'rain', 'in', 'Spain']

Or with list comprehensions –
pure words

song = "The rain in Spain..."

#replace all non-letter characters with spaces

t = [x if x.isalpha() else ' ' for x in song]

but now t is a list of characters

#convert from list of letters back to string

clean_str =''.join(t)

print(clean_str.split())

The rain in Spain

['The', 'rain', 'in', 'Spain']

Counting words and letters

song = "The rain in Spain..."

#replace all non-letter characters with spaces

s = ''

for x in song:

if x.isalpha()

s += x

else

s += ' '

t=s.split()

#splits across all spaces

print(t)

The rain in Spain

['The', 'rain', 'in', 'Spain']

How can we find out

how many total proper

words?

And how can we find

out how many total

English letters used?

Counting number of words in a
text file
def wc(filename):

""" word-counting program """

f = open(filename, "r")

text = f.read()

f.close()

words = text.split()

print("There are", len(words), "words.")

See previous slide for
how to produce only
alpha - words

Working with structured data
Reading and parsing text content line-by-line

When you have very large files, you probably do not want to
bring the entire file content into memory and store it in a
string

The for loop shredderTM

The entire file is
fed into the for loop

shredder...

Note: unlike a real shredder,
the for loop shredder TM
doesn’t destroy your data—
it just chops it into lines.

...which breaks it up into one-
line-at-a-time chunks (which
are themselves strings).

for loop line shredder

xfile = open('results.txt')

for line in xfile:

print(line)

Reading file line-by-line

• A text file can be thought of as a list of lines

• A text file has newlines at the end of each line

• A file handle open for read can be treated as a list of
strings where each line in the file is an element of this
list

• We can use the for statement to iterate through a list of
lines

xfile = open('results.txt')

for line in xfile:

print(line)

line_list = [line for line in xfile]

print(line_list)

One line at
a time

All lines into a
list of lines

Printing selected lines

• We can put an if statement in our for loop to only print
lines that meet some criteria

fhand = open('emails.txt')

for line in fhand:

if line.startswith('From:') :

print(line)

OOPS!

• Why additional blank lines?

From: stephen.marquard@uct.ac.za

From: louis@media.berkeley.edu

From: zqian@umich.edu

fhand = open('emails.txt')

for line in fhand:

if line.startswith('From:') :

print(line)

Stripping newlines with rstrip()

• We can strip whitespaces from the right-hand side of the
string using rstrip() method

• The newline is considered “white space” and is stripped

fhand = open('emails.txt')

for line in fhand:

line = line.rstrip()

if line.startswith('From:') :

print(line)

From: stephen.marquard@uct.ac.za

From: louis@media.berkeley.edu

From: zqian@umich.edu

Filtering lines using continue

fhand = open('emails.txt')

for line in fhand:

line = line.rstrip()

if not '@umich.edu' in line :

continue

print(line)

fhand = open('emails.txt')

for line in fhand:

line = line.rstrip()

if not line.startswith('From:') :

continue

print(line)

Find the highest score

f = open("results.txt")

max_score = 0

for line in f:

score = float(line)

if score > max_score:

max_score = score

print(max_score)

Find top 3 highest scores

• Keeping track of 3 scores makes the logic more complex:

set the highest_score to 0
set the second_highest to 0
set the third_highest to 0
iterate through each of the scores:
if the score > highest_score:

set the third_highest to second_highest
set the second_highest to highest_score
set the highest_score to score

otherwise if the score > second_highest:
set the third_highest to second_highest
set the second_highest to score

otherwise if the score > third_highest:
set the third_highest to score

An ordered list would offer much
simpler solution
• If you had some way of reading the data from the file and

then producing an ordered copy of the data, the program
would be a lot simpler to write

• Ordering data within a program is known as “sorting”

• We need to create a copy of disk data in memory by adding
every line to a list

Useful list methods

1. count()

2. extend()

3. index()

4. insert()

5. pop()

6. remove()

7. reverse()

8. sort()

A. Sorts the list into a specified order (low to high)

B. Removes specified list item

C. Adds an item at any index location

D. Looks for an item and returns its index value

E. Reverses the order of the list elements

F. Tells you how many times a value is in the list

G. Adds a list of items to an original list

H. Removes and returns the first list item

Match each list method to the method description

Top 3 scores

f = open("results.txt")

sorted_scores = []

for line in f:

score = float(line)

sorted_scores.append(score)

sorted_scores.sort()

sorted_scores.reverse()

print(sorted_scores[0:3])

Who won the contest?

• Our top-3 program prints top 3 scores

• But who are the winners? Who should get a
prize?

• How can we sort the scores and then find top-3
performers associated with high scores?

• Could we use parallel lists?

Johnny 8.65
Juan 9.12
Joseph 8.45
Stacey 7.81
Aideen 8.05
Zack 7.21
Aaron 8.31

scores.txt

keys values

8.65
9.12
8.45
7.81
8.05
7.21
8.31

Johnny
Juan
Joseph
Stacey
Aideen
Zack
Aaron

Lists aren’t the only data structure
to store data in memory
• We associate scores with names using a new data

structure commonly called the hash table (better
known as dictionary or associative array)

Summary

• Data in memory and in secondary storage

• Opening a file - file handle

• Manipulating file data through file handle: reading and
writing

• File structure - newline character (and removing it with
rstrip)

• Reading a file line-by-line with a for loop (or list
comprehension)

