
Prerequisites

• To learn how to write and run real programs we need:

• A decent text editor to write Python code. 

• Text editor is an app that allows you to easily edit and save simple 
text files.

• Recommended editors:

• Notepad++

• Sublime Text

• Python 3X interpreter properly installed

• Here are instructions for windows and for mac

• To check: open a command prompt/terminal and type python (or 
python3 for mac) – this should open Python shell. To exit shell 
type exit()

• If you are unable to do this, please use help from tutors or ITS

https://notepad-plus-plus.org/
https://www.sublimetext.com/
https://geek-university.com/python/add-python-to-the-windows-path/
https://wsvincent.com/install-python3-mac/


Python program structure
Running python scripts 

from command line
Workout 05.04

by Marina Barsky



Writing code in text editor

• So far we have played around with Python commands in the 
Python IDLE shell, or were running python code using PyCharm 
graphical user interface. 

• We want to write a "serious" Python now. 

• In a text editor of your choice (or in IDLE->new file), type the 
following Python code:

print ('Very serious program')

• Save the file as serious.py.



Running script from command 
line
• Let's assume our script serious.py is saved in a subdirectory 

my_scripts under the home directory of user monty. 

• Then open a terminal or a command-line window and type:

monty@python:~$ cd my_scripts

monty@python:~/my_scripts$ python serious.py 

Very serious program

monty@python:~/my_scripts$

• Do not go to the next step until you were able to run your script 
using Python interpreter from command-line.



Byte count in serious.py

• In file bc.py (byte-count) write a program that reads the text 
in file serious.py, and counts the number of bytes in this file:

name = 'serious.py'

handle = open(name, 'r')

text = handle.read()

print(name, 'has', len(text), 'bytes')



Structuring programs

• In many programming languages (e.g. Java, C and C++), it is not possible 
to simply have statements sitting alone at the bottom of the program

• They are required to be part of a special function that is automatically 
invoked by the operating system when the program is executed from 
command-line. This special function is called main. 

• Although this is not required by the Python programming language, it is 
a good idea that we can incorporate into the logical structure of our 
program. 

• The four lines of the code above are logically related to one another in 
that they provide the main tasks that the program will perform. 

• Since functions are designed to allow us to break up a program into 
logical pieces, it makes sense to call this piece main. 

name = 'serious.py'

handle = open(name, 'r')

text = handle.read()

print(name, 'has', len(text), 'bytes')



Adding main
• Change your bc.py code to:

def main():

name = 'serious.py'

handle = open(name, 'r')

text = handle.read()

print(name, 'is', len(text), 'bytes')

• We have defined a new function named main that doesn’t have any 
parameters. 

• The four lines of main processing are now placed inside this function. 

main() 

• Finally, in order to execute that main processing code, we need to call
the main function (last line). When you run your script again, you will 
see that the program works the same way as before.



Recommended program structure

• First, import any modules that will be required. 

• Second, define any functions that will be needed. 

• Third, define a main function that will get the process 
started. 

• Finally, call the main function (which will in turn call the 
other functions as needed).

Note: In Python there is nothing special about the name main. 
We could have called this function anything we wanted. We 
chose main just to be consistent with some of the other 
languages.



• Modify your script bc.py to have a proper program 
structure with main



Importing functionality
import random

• To use:

random.choice (["rock", "paper", "scissors")

from random import *

• To use:

choice (["rock", "paper", "scissors")

This is preferred – so you always know 
where the function is coming from



Importing our own modules
1. def squareit(n):

2. return n * n

3.

4. def cubeit(n):

5. return n*n*n

6.

7. def main():

8. anum = 15

9. print(squareit(anum))

10. print(cubeit(anum))

11.

12.

13. main()

File my_func.py 
implements simple 
functions



Importing our own modules
1. def squareit(n):

2. return n * n

3.

4. def cubeit(n):

5. return n*n*n

6.

7. def main():

8. anum = 15

9. print(squareit(anum))

10. print(cubeit(anum))

11.

12.

13. main()

File my_func.py

1. from my_func import *

2. anum = int(input("Enter number"))

3. print(squareit(anum))

File test.py

What do you notice 
when you run test.py?



Conditional invocation of main()

• Before the Python interpreter executes your program, it defines a 
few special variables

• One of those variables is called __name__ and it is automatically 
set to the string value "__main__" when the program is being 
executed by itself in a standalone fashion

• On the other hand, if your code is being imported by another 
program, then the __name__ variable is set to the name of your 
module

• This means that we can know whether the program is being run 
by itself or whether it is being used by another program and 
based on that observation, we may or may not choose to execute 
some of the code that we have written.



Function main
1. def squareit(n):

2. return n * n

3.

4. def cubeit(n):

5. return n*n*n

6.

7. def main():

8. anum = int(input("Please enter a number"))

9. print(squareit(anum))

10. print(cubeit(anum))

11.

12. if __name__ == "__main__":

13. main()

This is executed only if we run 
module my_func.py, not if: 
from my_func import *
import my_func

File my_func.py implements 
simple functions



Word count program

• Using an example from the lecture slides, write a Python script 
which counts the number of all real alpha-words in file spam.txt. 

• First, define function count_words, next define function main 
which invokes count_words with filename as a parameter. Finally, 
invoke main by passing the name of file as a parameter:

if __name__ == "__main__":

main('spam.txt')

• Save your code in file wc.py (word-count), test it by running it 
from command-line.

What if we want to create a general word-count program that 
would count words in any file?



Running script with command-line 
arguments
• There is a special module which has all the functions needed for the 

interaction of your program with the operating system:

import sys

• For every invocation of Python script, sys.argv is automatically a list of 
strings representing the arguments (as separated by spaces) on the 
command-line. 

• To understand how it works, let’s create a simple script count_args.py:

import sys

print(sys.argv, len(sys.argv))

• Now, run this script from command-line:

monty@python:~/my_scripts$ python count_args.py

monty@python:~/my_scripts$ python count_args.py foo and bar



General word-counting program

• Modify your wc.py code to count words in a file whose name is passed 
as a command-line parameter. 

• Here is an example of how to use the filename passed as a command-
line parameter:

import sys

name = sys.argv[1]

handle = open(name, 'r')

text = handle.read()

print(name, 'has', len(text), 'bytes')

• Run a new version passing different existing file names as parameters. 
Take care of the case when the file does not exist. Submit your wc.py to 
Google classroom. 



Vocabulary counting program

• In a new file vocab.py, use a dictionary data structure to 
count the number of distinct words in a file, the name of 
which is passed as a parameter to the Python script. 

• You can start from a sample code in lecture slides. 

• Keep the style very similar to your previous code, with main 
function and its conditional invocation. Pass the file name as 
a command-line parameter.

• Output the total number of unique words (author’s 
vocabulary)



Collect counts for each word

• In file top_words.py, write a program that collects the count 
of how many times each unique word has appeared in the 
file

• For example, running your program with spam.txt as a 
parameter:

monty@python:~/my_scripts$ python top_words.py spam.txt

• should produce the following output:

{'holidays': 1, 'poptarts': 3, 'for': 1, 'spam': 3, 

'Will': 1, 'I': 3, 'and': 3, 'get': 1, 'like': 2}



Most frequent words

• Modify top_words.py to extract the top 5 words with the 
largest counts

• For this, collect dictionary tuples in form of (value, key) into 
a new list, sort the resulting list in reverse order, and output 
the top-5 slice

• Submit top_words.py 



In total submit:

• bc.py

• wc.py

• vocab.py

• top_words.py



Homework 4
Using files and dictionaries to find friends

Demo data app (not the demo of homework, just an example):
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/data/predict/

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/data/predict/


My friends dataset

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Average ratings for 26 friends Female

Male



Classification by proximity 
to nearest neighbors

Weightlifting

Woman

Karaoke

Man

?
Woman

Woman

Man

Man



Red Panda: a Bear or a Cat?



Red Panda: a Bear or a Cat

Flynn, J. J.; Nedbal, M. A.; Dragoo, J. W.; Honeycutt, R. L. (2000). "Whence the Red 
Panda?" Molecular Phylogenetics and Evolution. 



Negative No No No

Athlete No Yes Yes

Cheerful No Yes Yes

Coder Yes No Yes

Complete Yes Yes Yes

Do you like 
programming?

Do you like 
partying?

Do you like 
hiking?

Collect preferences from users 
and store them in a file



Athlete No Yes Yes

Cheerful No Yes Yes

Athlete No Yes Yes

Coder Yes No Yes

Who is preferred friend for 
Athlete?

?

OR


