
Functions
Practice 03.02

By Marina Barsky

Functions have to be called in order to work!

• When you define a function above – a special place in memory stores all
information about this function under a special variable called greeting.
At this point your function is just a piece of code (text for Python)

• You need to call the function in order to make it do its work:

greeting ('Marina')

def greeting (name):

return 'Happy birthday, dear ' + name

Call to
function
greeting

Custom argument to be used
as function parameter

What do you expect to happen?

There are two types of functions

• Functions that report to the caller – return value

• This value can be printed or stored in a variable

• Functions that do something but never report back – do not have return
statement

• If there is no return statement, then we say that the function returns a
special value: None

def double_number (n):

return 2*n

def print_greeting (name):

print ('Happy birthday, dear’, name)

Math type of functions

Imperative type of functions

Proper functions

• Functions are small independent pieces of code which can be combined
to build a more complex program

• Functions should be treated as a Blackbox:

• The only input to the function is through its parameters

• The only output is through its return value

• Samurai principle: return or die

def dbl(x):

""" doubles x """

return 2*x

def dblPR(x):

""" doubles x """

print (2*x)

>>> answer = dbl(21) >>> answer = dblPR(21)

Proper function Not a function: sub-program

To function or not to function...

• Organize your code into “paragraphs” - capture a complete

thought and “name it”

• Don’t repeat yourself - make it work once and then reuse it

• If something gets too long or complex, break it up into logical

chunks and put those chunks into functions

• Make a library of common stuff that you do over and over -

perhaps share this with your friends...

Function patterns

1. Numeric functions

2. Functions on strings

3. Functions on lists

4. Conditional functions

5. Functions that return Boolean values:
• point of no return
• no if required

1. Functions that work on numbers.
Function reuse

English metric

1 inch = 2.54 cm

1 foot = 12 in.

1 yard = 3 ft.

1 rod = 5(1/2) yd.

1 furlong = 40 rd.

1 mile = 8 fl.

The United States uses the English system of
(length) measurements. The rest of the
world uses the metric system.

So, people who travel abroad and
companies that trade with foreign partners
often need to convert English
measurements to metric ones and vice
versa.

Develop the functions inches->cm, feet-
>inches, yards->feet, rods->yards, furlongs-
>rods, and miles->furlongs.
Then develop the functions feet->cm, yards-
>cm, rods->inches, and miles->feet.

Hint: Reuse functions as much as possible.

2. Functions with strings

• Write a function flipside (astring), which takes in a string astring and
returns a string whose first half is astring’s second half and whose
second half is astring’s first half. If len(astring) (the length of astring) is
odd, the first half of the input string should have one more character
than the second half. (Accordingly, the second half of the output string
will be one shorter than the first half in these cases.) Here you may want
to use the built-in function len(astring), which returns the length of the
input string, astring.

• Examples:

>>> flipside('homework')

workhome

>>> flipside('carpets')

petscar

3. Functions with lists

• The local supermarket needs a program that can compute the value
of a bag of coins.

• Define the program sum_coins. It consumes a list of four numbers:
the number of pennies, nickels, dimes, and quarters in the bag; it
produces the amount of money (dollars) in the bag.

4. Conditional paths inside the function

• Some banks pay different levels of interest for saving accounts.
The more a customer deposits, the more the bank pays. In such
arrangements, the interest rate depends on the interval into
which the savings amount falls.

• To assist their bank clerks, banks use interest_rate functions.

• Our interest rate function must determine which of several
conditions holds for the input. We say that the function is a
conditional function, and we formulate the definition of such
functions using conditional expressions.

n <= 1000 → .040
n <= 5000 → .045
n <= 10000 → .055
n > 10000 → .060

5. Functions that return Boolean values:
True or False

• These functions can be written with a single line

def is_even (n):
return n % 2 == 0

def can_vote (age):
return age >= 18

def is_teenager (age):
return age < 19

