
Imperative programming
Loops

Lecture 04.01

By Marina Barsky

Imperative programming!

• A programming paradigm that describes computation in terms
of statements that change program state (change the values
of common variables)

• The statements are performed one after another, according to
the program path

Guessing game

print("Welcome!")

secret = random.choice(range(10))

g = int(input

("Guess the number: "))

if g != secret:

print("You lose!")

else:

print("You win!")

print("Game over!")

Welcome secret Input
number

g != secret

?

LOOSER

WINNER

Game
over

The program as a network of branching roads

If/else branches

g = int(input())

print(‘Lose’)

print(‘Over’)

YesNo print("Welcome!")

secret = random.choice(range(10))

g = int(input

("Guess the number: "))

if g != secret:

print("You lose!")

else:

print("You win!")

print("Game over!")

print(‘Win’)

We ask the question and change the program path according to the answer

g!=secret?

Guessing game: giving another chance

print(‘Again’)

print(‘Over’)

YesNo

print("Welcome!")

g = int(input("Guess the number: "))

while g != secret:

print("Try again!")

g = int(input ("Guess the number:"))

print("You win!")

print("Game over!")

print(‘Win’)

g = int(input())
Loops allow you to repeat
the sequence of commands
while a certain condition
remains True

g!=secret?

Guessing game

print("Welcome!")

secret = random.choice(range(10))

g = int(input

("Guess the number: "))

if g != secret:

print("You lose!")

else:

print("You win!")

print("Game over!")

Welcome secret Input
number

g != secret

?

LOOSER

WINNER

Game
over

The program is moving in one direction choosing alternative paths

Guessing game

Welcome secret Input
number

g != secret

False path

WINNER
Game
over

Roundabout

print("Welcome!")

g = int(input("Guess the number: "))

while g != secret:

print("Try again!")

g = int(input ("Guess the number:"))

print("You win!")

print("Game over!")

?

Input
number

The user types in a sequence of positive integers. The program
is to add up the integers.
The user signals the end of the input by entering a non-
positive value which should not be part of the sum.

sum = 0

v = int(input('Enter a positive integer: '))

while (v > 0):

sum = sum + v

v = int(input('Enter a positive integer: '))

print('Summation is :', sum)

Another example

x = 5

if x != 0:

print(x)

x = x – 1

print(x)

if <condition>:
<body>

What is printed on
the screen?

Conditional execution

x = 5

while x != 0:

print(x)

x = x – 1

print(x)

while loops:
indefinite, conditional

iteration

while <condition>:
<loop body>

What is printed now?

Conditional iteration (repetition)

The main pattern of while loop

while <condition>:
<body>
<update condition>

x = 10

while x != 0:

print(x)

x = x – 1

print(x)

From the logical point of view,
while loop has three components:
1. Prime the condition
2. Check the condition

3. Update the condition

Prime the condition.

Check the condition.

Update the condition.

The conditional variable has to change
in the loop body!

jar_empty = False

while not jar_empty:

scoop()

wash_jar()

The conditional variable has to change
in the loop body!

n = 0

while n < 10:

lather()

rinse()

dry_off()

Extreme Looping

What does this code do?

print('It keeps on')

while True:

print('going and')

print('Phew! I\'m done!')

Extreme Looping

What does this code do?

print('It keeps on')

while True:

print('going and')

print('Phew! I\'m done!')

the loop keeps on running as
long as this test is True

This won't print until the while loop finishes -
In this case, it never prints!

Making our escape!

import random

escape = 0

while escape != 42:

print('Help! Let me out!')

escape = random.choice([41,42,43])

print('At last!')

Will the same thing appear
every time this is run?

import random

escape = 0

while escape != 42:

print('Help! Let me out!')

escape = random.choice([41,42,43])

print('At last!')

What modifications do we need
to make to count the number of
iterations and report it?

Making our escape!

Count the iterations…

import random

escape = 0

count = 0

while escape != 42:

count += 1

print('Help! Let me out!')

escape = random.choice([41,42,43])

print('At last!')

How could we make it
harder/easier to escape?

Harder to escape

import random

escape = 0

count = 0

while escape != 42:

count += 1

print('Help! Let me out!')

escape = random.choice(range(100))

print('At last!')

How could we make the escape
after at most 10 iterations?

Ensuring the escape

import random

escape = 0

count = 0

while escape != 42:

count += 1

print('Help! Let me out!')

escape = random.choice(range(100))

if count == 10:

break

print('At last!')

while True:

line = input('> ')

if line[0] == '#' :

continue

if line == 'done' :

break

print(line)

print ('goodbye')

break and continue

Continue to the next
iteration of the loop

Break out of the loop and
do the next command
after loop body

x = 39

while x < 44:

if x % 2 == 0:

print(x)

x += 1

while we're here…

What numbers will
this loop print out?

a = int(input("Number between 1 and 10: "))

while not (a >= 1 and a <= 10):

a = int(input("Number between 1 and 10! "))

print("Finally!")

while

is commonly used for input validation

This will not let users out until they
enter the required number

while loop summary

• Condition variable should be initialized (outside the loop) in
order to enter the loop

• Condition should be updated in the body of the loop

• If you need to accumulate a value during loop iterations, the
accumulator variable should be initialized outside the loop

Exercise

• Ask the user to enter a series of numbers and
when the user enters ‘#’ report an average.

