
Loop patterns

Practice 04.03
By Marina Barsky

Loop Idioms:
what we do with loops

Note: Even though these examples are simple, the patterns apply to all kinds of loops

1. Accumulators
2. Parallel lists and loops over indices
3. Nested loops

1. The main pattern of for loops:
accumulators

Set accumulator variable

to initial value

Look for something or

do something to each

thing separately,

updating a variable

for thing in data:

Look at the variable

• Accumulator variable
initialized outside the
loop

• The variable accumulates
some value in the body of
the loop using iteration
variable

• When we done with the
loop: output the value
accumulated in the
variable

3

What is the Largest Number?

41 12 9 74 15

1574

for n in a_list:

n ?

912413

for loops: max val in the list

largest = None

print('Before:', largest)

for iterval in [3, 41, 12, 9, 74, 15]:

if largest is None or largest < iterval:

largest = iterval

print('Loop:', iterval, largest)

print('Largest:', largest)

def find_min(a_list):
min = None
for x in a_list:

if min is None or min > x:
min = x

return min

for loops: min val in the list

2. Looping through parallel lists

• If we need to iterate over elements of more than one list at
the same time we use for loops of type II: loops over indices

• If we traverse several lists at the same time, we say that we
are working with parallel lists (or strings)

• Example:

Given two strings of the same length, count how many times the
characters at the same position differ (humming distance)

Parallel min difference

• Given two lists of numbers, compute the minimum
difference among any pair of elements at the same
position in both lists.

• E.g., list1 = [1, 2, 3, 1], list2 = [-2, 10, 5, 0, 6], the function
min_diff would return 1, which is the difference for
position 3 in both lists: {1,0}

• The ideas are similar to the find_min, only in the loop we
iterate over both lists – that means we need to iterate
over indices, not elements

Parallel min difference: solution

def min_diff(list1, list2):

'''

The parameters list1, list2 are two int lists.

Find minimum difference among any pairs at the

same position.

'''

min_sofar = None

min_len = min(len(list1),len(list2))

for i in range(min_len):

diff = abs(list1[i] – list2[i])

if min_sofar is None or diff < min_sofar:

min_sofar = diff

return min_sofar

42

75

70

int

int

int

list

x

We can
equally well
imagine
them as
vertical
structures.

2. Nested lists and nested loops

Lists can hold ANY type of data

x = [42, 75, 70] 42 75 70

int int intlist

x

List elements can be numbers or strings

Lists can hold ANY type of data

42.0 75.0 70.0

double double doublelist

x

42 7 -11

int int intlist

x

“go” “red”
String String Stringlist

x

2D lists

Lists can hold ANY type of data -- including lists !

list

x

x = [[1,2,3,4], [5,6], [7,8,9,10,11]]

list

x

list

list

list

x[0]

x[1]

x[2]

Lists can hold ANY type of data -- including lists !

x = [[1,2,3,4], [5,6], [7,8,9,10,11]]

2D lists

list

x

list

list

list

x[0]

x[1]

x[2]

Lists can hold ANY type of data -- including lists !

x = [[1,2,3,4], [5,6], [7,8,9,10,11]]

Rows within 2d lists need not be the same length

Jagged lists

list

x

list

list

list

x[0]

x[1]

x[2]

How many rows does x have, in general ?

How many columns does x have, in general ?

What value is changed with x[1][2]=42 ?

x[2][3]

x[0][0]

What does x[1] refer to?

Rectangular lists

Concrete example

grades = [['Assignment 1', 80],

['Assignment 2', 90],

['Assignment 3', 70]]

sublist = grades[0]

sublist[0]

sublist[1]

grades[0][0]

grades[1][0]

grades[2][1]

Number of rows in this table?

Number of columns?

• The bodies of loops can contain any statements, including
other loops. When this occurs, this is known as a nested loop.

• In this case we have more than one iteration variable:

num_list = [1, 2, 3]

alpha_list = ['a', 'b', 'c']

for number in num_list:

print(number)

for letter in alpha_list:

print(letter)

Nested loops

Here number is an
iteration variable in
the outer loop, and
for each value of
number – there is
another inner loop
with its own iteration
variable letter

Nested loops: finger exercise

num_list = [1, 2, 3]

alpha_list = ['a', 'b', 'c']

for number in num_list:

print(number)

for letter in alpha_list:

print(letter)

number letter output

1 1

1 a a

1 b b

1 c c

2 2

2 a a

2 b b

2 c c

3 3

3 a a

3 b b

3 c c

Example 1. Analyze

• What is printed here?

for i in range(10, 13):

for j in range(1, 3):

print(i, j)

Example 2. Analyze

list_of_lists = [['uno', 'dos’],

[1, 2],

['one', 'two', 'three']]

for list in list_of_lists:

print(list)

for list in list_of_lists:

for item in list:

print(item)

Example 3. Analyze

names=['ann','ali', 'bob']

cars=['mercedes','porshe']

numbers=[1,2,3]

for name in names:

for car in cars:

for number in numbers:

print("{0} has {1} of {2}".format(

name,number,car))

Example 4. Program

• Given two lists of numbers, compute the minimum
difference among any pair of numbers, one from each list.

• E.g., list1 = [1, 2, 3, 4], list2 = [-2, 10, 5, 0, 6], the function
min_diff_all would return 1, which occurs twice, {1,0},
{4,5}.

The ideas are similar to the find_min, only this time we
need iterate over all possible value combinations in two lists

Solution: total min difference

def min_diff_all(list1, list2):

'''

The parameters list1, list2 are

two int lists.

Find minimum difference among any pairs.

'''

min_sofar = None

for x in list1:

for y in list2:

diff = abs(x – y)

if diff is None or diff < min_sofar:

min_sofar = diff

return min_sofar

Example 5. Program

• Given num_rows and num_cols, print a list of all seats in a
theater. Rows are numbered, columns lettered, as in 1A or 3E.

• Print a space after each seat, including after the last.

• Use separate print statements to print the row and column.
Ex: num_rows = 2 and num_cols = 3 prints:

1A 1B 1C 2A 2B 2C

print('A', end=' ')

Optional parameter to
print – tells what to do
when the line ends

print()

Moves to the next line

ASCII

ASCII is a table that
tells the computer
how to represent
characters as bits!

8 bits =
1 byte

The SAME bits
represent integers, if
the variable has type

int instead of str

American Standard Code for Information Interchange

type: str

type: int

name:

name:

value:

value:

'*'

42

Identical bits!

The types determine how to interpret

the bits; the names don't matter at

all…

ASCII

ASCII is a table that
tells the computer
how to represent
characters as #s

Converting between numbers and characters

chr

ord convert character
to number

convert number to
character.

ord('a')is 97

chr(97)is'a'

chr and ord

chr(n)

ord(c)

Input: an integer in range(256)

Input: a string of one character, c

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ASCII

VALUES

Output: a one-char. string of that ASCII value

Output: an integer, the ASCII value of c

CONVERTERS

97 122

65 90

99 101 103 105 107 109 111 113 115 117 119

67 69 71 73 75 77 79 81 83 8785

for i in range(128):

print(i,chr(i))

for i in '**** CS! ****’:

print(ord(i))

try these!

chr and ord

chr(66) is 'B'

ord('a') is 97

abcdefghijklmnopqrstuvwxyz
97 122

65

ABCDEFGHIJKLMNOPQRSTUVWXYZ
90

ASCII

VALUES

What is chr(ord('i')+3)?

What is chr(ord('Y')+3)?

99 101 103 105 107 109 111 113 115 117 119

67 69 71 73 75 77 79 81 83 8785

Solution: theater seats

def print_seats(num_rows, num_cols):
first_seat = ord('A')
for i in range(1, num_rows+1):

for j in range(first_seat, first_seat+num_cols):
seat = chr (j)
print (i, end='')
print (seat, end=' ')

Example 6. Program

• Write a function that given a list of strings returns the string
with the largest number of vowels

• For example for list t = ['africa', 'america', 'Australia'] returns
'Australia'.

Solution: most vowels

def most_vowels(t):
max_sofar = None
best_index = 0
for i in range(len(t)):

s = t[i] #looking at the current string
count = 0
for c in s:

if c in 'aeiou':
count += 1

if max_sofar is None or count > max_so_far:
max_sofar = count
best_index = i

return t [best_index]

Inner loop for
counting vowels in s

Nested loops for printing patterns

for row in range(3):

print('# # # # ')

output?

Patterns

for row in range(3):

print('# # # # ')

#

#

#

Not particularly flexible!

for row in range(3):

for col in range(4):

print('#')

#

#

#

Is this still the
output?

Nested loops are powerful – and flexible...

NO! What changes
are needed?

Patterns

Tracking rows and columns

for row in range(3):

for col in range(4):

print('$', end='')

print()

1 cols2 30

rows

2

1

0

for row in range(3):

for col in range(6):

print(_________)

print()

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

Change each block of code so that it will print the examples below:

Pattern 1

General approach

• We must build multiple lines of output using:

• an outer "vertical" loop for each of the lines

• inner "horizontal" loop(s) for the patterns within each line

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

Step 1

• First write the outer loop which iterates specified number of
rows and moves to the next row with each iteration

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

for row in range(3):

print()

Step 2

• Now look at the line contents. Each line has a pattern.

• In this case each line has the same 6 numbers from 0 to 5

for row in range(3):

for col in range(6):

print(col, end=' ')

print()

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

for row in range(3):

for col in range(6):

print(_________)

print()

Change each block of code so that it will print the examples below:

0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

Pattern 2

for row in range(3):

for col in range(6):

print(row,end=' ')

print()

Change each block of code so that it will print the examples below:

0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

Pattern 2 solution

for row in range(3):

for col in range(6):

print(_________)

print()

Change each block of code so that it will print the examples below:

0 1 2 3 4 5

1 2 3 4 5 6

2 3 4 5 6 7

Pattern 3

for row in range(3):

for col in range(6):

print(col+row,end=' ')

print()

Change each block of code so that it will print the examples below:

0 1 2 3 4 5

1 2 3 4 5 6

2 3 4 5 6 7

Pattern 3 solution

for row in range(3):

for col in range(6):

print(_________)

print()

Change each block of code so that it will print the examples below:

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

Pattern 4

for row in range(3):

for col in range(6):

print((col+row)%2,end=' ')

print()

Change each block of code so that it will print the examples below:

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

Pattern 4 solution

Self-exercises

• Important limitation! For these problems, you should not use
Python’s string-multiplication or string-addition operators.
Because our goal is to use loop constructs, use loops to
achieve the repetition that those operators might otherwise
provide. There is one exception, however — you may use
string-multiplication with the space character ' '. That is, you
can create any number of consecutive spaces with constructs
like ' '*n

Problem 1. print_rect

• Write a function named print_rect that takes three arguments:
width, height, and symbol, and prints a width by height rectangle of
symbols on the screen.

>>> print_rect(4, 6, '%')

% % % %

% % % %

% % % %

% % % %

% % % %

% % % %

Problem 2. print_triangle

• Create a function print_triangle that takes three arguments: leg, symbol, and
right_side_up and prints a right-angled triangle of symbols on the screen. leg is a
number that determines the width of the sides of the triangle forming the right
angle, and right_side_up is a boolean that determines whether the triangle is
printed right side up (True) or upside down (False).

>>> print_triangle(3, '@', False)

@

@ @

@ @ @

>>> print_triangle(3, '@', True)

@ @ @

@ @

@

Problem 3. print_bumps

• Now, use your print_triangle function to write a function called print_bumps
(num, symbol1, symbol2) that will print the specified number of two-symbol
“bumps”, where each bump is larger than the last, as in the following example:

>>> print_bumps(4, '%', '#')

%

%

% %

%

% %

% % %

%

% %

% % %

% % % %

#

Problem 4. print_diamond

• Write a function called print_diamond (width, symbol) that
prints a diamond of symbol whose maximum width is
determined by width.

>>> print_diamond(3, '+')

+

+ +

+ + +

+ +

+

Problem 5. print_striped_diamond

• Next, write a function called print_striped_diamond (width, symbol1, symbol2)
that prints a “striped diamond” of symbol1 and symbol2. For example:

>>> print_striped_diamond (7, '.', '%')

.

. %

. % .

. % . %

. % . % .

. % . % . %

. % . % . % .

% . % . % .

. % . % .

% . % .

. % .

% .

.

Problem 6. print_crazy_striped_diamond

• Finally, write a function called print_crazy_striped_diamond (width, symbol1, symbol2,
symbol1_width, symbol2_width) that prints a “striped diamond” of symbol1 and symbol2
where the stripes can have varied widths: symbol1_width determines the width of the stripe
made of symbol1 and symbol2_width determines the width of the stripe made of symbol2.

• For example:
>>> print_crazy_striped_diamond (7, '.', '%', 2, 1)

.

. .

. . %

. . % .

. . % . .

. . % . . %

. . % . . % .

. % . . % .

% . . % .

. . % .

. % .

% .

.

challenge

