
Drawing with Turtle

Lecture 04.04
By Marina Barsky

All code examples:
turtle_setup.py
red_square.py
polygon.py
birthday_cake.py
star_turtle_algorithm.py
flower.py
circles.py
squares.py
nested_star_loop.py

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/turtle_setup.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/red_square.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/polygon.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/birthday_cake.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/star_turtle_algorithm.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/flower.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/circles.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/squares.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/nested_star_loop.py

Sketch Pad
• Want graphics? In Python, we give commands to a

"turtle" to draw on a digital canvas!

import turtle

Make sure that your program is not called turtle.py, and there is
no program called turtle.py in your project

import turtle

screen = turtle.Screen() # get a screen to draw on

screen.setup(500,500,40,50) # width, hight, left, top

screen.bgcolor("lightgreen")

alex = turtle.Turtle() # create artistic turtle

alex.shape("turtle")

alex.shapesize(4)

alex.color("brown")

turtle.done()

Our first turtle

turtle.exitonclick()

OR

Coordinate system

• Canvas operates in x-y
coordinate plane

– (0,0) is the center

• alex.reset()

– Delete any drawings,
reset the screen, re-
center the turtle

– Turtle resets to face
right (or east)

Canvas

(0,0)

w
in

d
o

w
_h

ei
gh

t(
)

window_width()

(42,42)

Moving turtle (and drawing)

Started here… Finished here!

100 pixels

… setup

alex = turtle.Turtle()

alex.reset() # home()

alex.forward(100)

Sketching turtle path

turtle_setup.py

alex.forward(50)

alex.left(90)

alex.forward(100)

alex.right(90)

alex.forward(100)

alex.circle(50)

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/turtle_setup.py

Explanation

Start here…

Finish here!

alex.forward(50)

In pixels
NOTE: backward(n) moves the turtle back

alex.left(90)

In degrees
alex.forward(100)

alex.right(90)

In degrees
alex.forward(100)

alex.circle(50)

Starts drawing circle to the left of the turtle
Radius is specified In pixels

Pen up, Pen down

alex.reset()

alex.fd(100)

alex.lt(90)

alex.up()

alex.fd(100)

alex.lt(90)

alex.down()

alex.fd(100)

turtle.done()

alex.reset()

alex.fd(100)

Same as forward()
alex.lt(90)

Same as left()
alex.up()

Lifts the pen off the canvas
alex.fd(100)

alex.lt(90)

alex.down()

Puts the pen down on the canvas
alex.fd(100)

turtle.done()

Explanation

Started here…

Finished here!

import turtle

pen = turtle.Turtle()

You may need some more commands:
• pen.dot()

• pen.setheading(to_angle)

• Set the orientation of the turtle to to_angle
• pen.tracer(0,0)

• Turn turtle animation on/off
• pen.speed(0)

Turtle Graphics

https://docs.python.org/3.6/library/turtle.htmlTurtle reference

“fastest”: 0
“fast”: 10
“normal”: 6
“slow”: 3
“slowest”: 1

0 - east
90 - north
180 - west
270 - south

https://docs.python.org/3.6/library/turtle.html

Red square by Kazimir Malevich, 1915

• Suprematism believed in
the radical reduction of
painting to nothing but
shape and color

• Paintings would depict
nothing, state nothing,
resist all aesthetic
conventions

• They would spring free as
the revolution itself

Red Square:
Painterly Realism of a Peasant Woman

in Two Dimensions

Suprematism: shapes and colors

Two Dimensional Self Portrait Airplane Flying

Artistic turtle

import turtle

screen = turtle.Screen()

screen.setup(500,500)

screen.colormode(255)

screen.bgcolor(221,226,222)

pen = turtle.Turtle()

pen.hideturtle() No more animals –
just a pen (and a brush)

Color can be specified as a
color string, or as a mix of
(Red, Green, Blue)

Red square: version 1
drawing red square

pen.color("red")

pen.fillcolor("red")

pen.begin_fill()

start drawing

pen.forward(100)

pen.left(90)

pen.forward(100)

pen.left(90)

pen.forward(100)

pen.left(90)

pen.forward(100)

pen.left(90)

end drawing

pen.end_fill()

Identifying repeating patterns
drawing red square

pen.color("red")

pen.fillcolor("red")

pen.begin_fill()

start drawing

pen.forward(100)

pen.left(90)

pen.forward(100)

pen.left(90)

pen.forward(100)

pen.left(90)

pen.forward(100)

pen.left(90)

end drawing

pen.end_fill()

What commands do
we want to repeat?

How many times do
we want to repeat?

Red square: version 2:
with function and loop

def draw_square(t, side, color):

t.color(color)

t.fillcolor(color)

t.begin_fill()

for i in range(4):

t.forward(side)

t.left(90)

t.end_fill()

Pen variable

Side len

Square color

Loop body:
repeat 4 times

Red square: version 2:
center the square

def draw_square(t, side, color):

t.goto(-side/2, - side/2)

t.color(color)

t.fillcolor(color)

t.begin_fill()

for i in range(4):

t.forward(side)

t.left(90)

t.end_fill()

Red square: version 2:
center the square

def draw_square(t, side, color):

t.goto(-side/2, - side/2)

t.color(color)

t.fillcolor(color)

t.begin_fill()

for i in range(4):

t.forward(side)

t.left(90)

t.end_fill()

Completed version in red_square.py

(0,0)

(-150,-150)

300

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/red_square.py

Draw triangle

def draw_triangle(t, side, color):

t.goto(-side/2, - side/2)

t.color(color)

t.fillcolor(color)

t.begin_fill()

for i in range(3):

t.forward(side)

t.left(120)

t.end_fill()

draw_triangle(pen, 300, "blue")

What is the difference between
rectangle and triangle?

Could we create any regular n-gon?

What should we change to
make it generic?

def draw_triangle(t, side, color):

t.goto(-side/2, - side/2)

t.color(color)

t.fillcolor(color)

t.begin_fill()

for i in range(3):

t.forward(side)

t.left(120)

t.end_fill()

def draw_ngon(t, n, side, color):

"""

Draws an arbitrary n-sided polygon

Parameters:

t: turtle pen

n: number of sides of the polygon

side: length of each side

color: fill color

"""

t.color(color)

t.fillcolor(color)

t.begin_fill()

for i in range():

t.forward(side)

t.left()

t.end_fill()

Generic n-gon

How many degrees
should we turn?

360/n

How many times to repeat?n

Completed version in polygon.py

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/polygon.py

N-gon art

stacking polygons

colors = ["red", "blue", "black", "orange",

"purple", "yellow", "green", "brown"]

pen.goto(-100, - 100)

curr_side_len = 200

for n in range (4, 10):

curr_side_len -= 25

draw_ngon(pen, n, curr_side_len,

random.choice(colors))

Birthday cake

Completed version in birthday_cake.py

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/birthday_cake.py

Loop pattern design recipe
1. Draw the desired shape on

paper
2. Mark distances and

dimensions
3. Identify repeating patterns:

this goes into the body of the
loop

4. Identify what changes from
one repetition to another:
make this change using
accumulator variable (defined
and initialized outside the
loop)

5. Identify number of repetitions:
loop header

As it applies to birthday cakes …

start_x,
start_y

w = 300

h

colors = ["brown", "yellow",

"purple", "pink", "white"]

w = 300

h = 20

start_x = -w/2

start_y = -len(colors)*h/2

Draw picture and mark coordinates and
dimensions

Code rectangle with current w,h
for i in range(len(colors)):

pen.goto(start_x, start_y)

pen.color(colors[i])

pen.fillcolor(colors[i])

pen.begin_fill()

pen.forward(w)

pen.left(90)

pen.forward(h)

pen.left(90)

pen.forward(w)

pen.left(90)

pen.forward(h)

pen.left(90)

pen.end_fill()

start_x += 5

start_y += curr_height

curr_width -= 10

start_x,
start_y

w = 300

h

There are total 5 rectangles to draw
for i in range(len(colors)):

pen.goto(start_x, start_y)

pen.color(colors[i])

pen.fillcolor(colors[i])

pen.begin_fill()

pen.forward(w)

pen.left(90)

pen.forward(h)

pen.left(90)

pen.forward(w)

pen.left(90)

pen.forward(h)

pen.left(90)

pen.end_fill()

start_x += 5

start_y += curr_height

curr_width -= 10

start_x,
start_y

curr_width = 300

h

What changes at each iteration?
for i in range(len(colors)):

pen.goto(start_x, start_y)

pen.color(colors[i])

pen.fillcolor(colors[i])

pen.begin_fill()

pen.forward(w)

pen.left(90)

pen.forward(h)

pen.left(90)

pen.forward(w)

pen.left(90)

pen.forward(h)

pen.left(90)

pen.end_fill()

start_x += 5

start_y += h

w -= 10

start_x,
start_y

w = ? h

How start_x changes?
How start_y changes?

How w changes?

What changes at each iteration?
for i in range(len(colors)):

pen.goto(start_x, start_y)

pen.color(colors[i])

pen.fillcolor(colors[i])

pen.begin_fill()

pen.forward(w)

pen.left(90)

pen.forward(h)

pen.left(90)

pen.forward(w)

pen.left(90)

pen.forward(h)

pen.left(90)

pen.end_fill()

start_x += 5

start_y += h

w -= 10

start_x,
start_y

w = ? h

Fast turtle!
• You can adjust the speed of the turtle with
speed() or with tracer()

• tracer(n)

– Sets drawing to update every "regular" nth

screen update

• Use larger values for faster updates

• tracer(1)

– Default – Slowest update

– To speed up drawing, set to a higher value

• tracer(0)

– Disables screen updates.

– After you draw, call the update() function to
force drawing to appear on screen

Designing n-star algorithm

We want to design an algorithm for
drawing a generic n-star (n>=5)

The logic starts with a polygon

• How many times did turtle turn to draw
a pentagon (5-gon)?

• It ends facing the same direction – so
how many degrees did it turn left in
total?

• What is the angle at each turn?

left_angle

Designing n-star algorithm

To draw a full star with n rays:

• How many times did turtle turn to the
right?

left_angle

right_angle

Designing n-star algorithm

To draw a full star with n rays:

• How many times did turtle turn to the
right?

n times
• How many times did it turn to the left?
n times

left_angle

left_angle

Designing n-star algorithm

To draw a full star with n rays:

• Turn turtle n times to the right
• Turn turtle n times to the left

• The turtle ends facing the original
direction -- making a complete left turn
by 360 degrees

left_angle

α

β

β = 2 α

Designing n-star algorithm

To draw a full star with n rays:

• The turtle made a complete left turn by
360 degrees

• But each left_angle = 2*right_angle!

• Therefore:
n * β - n * α = 360

• Thus:
right_angle = 360/n
left_angle = 2*right_angle

left_angle

β

α

Completed version in star_turtle_algorithm.py

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/star_turtle_algorithm.py

Inspirations
• Interesting drawings can be obtained by running the same

drawing routine multiple times

– Circles forming a flower: flower.py

– Circles forming a circular ornament: circles.py

– Lines forming a square ornament: squares.py

• Nested loops are also useful here:

– Multiple stars forming a circular ornament:
nested_star_loop.py

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/flower.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/circles.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/squares.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/loops/code/nested_star_loop.py

