
More on Lists(Strings) and
List(String) Comprehensions

Lecture 04.05
By Marina Barsky

Lists (strings) are Python objects

They have attached functions that
work on the object itself

These functions are called methods

s = 'abc’

s = s.upper()

n = s.count('a’)

t = [1, 2, 3, 2]

t.count(2)

i=t.count(3)

What methods are available?

s='abc'

dir(s)

dir(str)

[…'capitalize', 'count', 'encode', 'endswith',
'find', 'format', 'index', 'isalnum',
'isalpha', 'isdecimal', 'isdigit', 'islower',
'isnumeric', 'isprintable', 'isspace',
'isupper', 'join', 'lower’, …]

How to use a method?

• help(str.find)
Help on method_descriptor:
find(...)

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

Try str methods in Python shell: 1/2

>>> white_rabbit = "I'm late! I'm late! For a
very important date!"

>>> white_rabbit.lower()

>>> white_rabbit.find('late')

>>> white_rabbit.count('ate')

>>> white_rabbit.find('late',7)

>>> white_rabbit.find('Late')

>>> white_rabbit.rfind('late')

>>> white_rabbit The original string remains
unchanged, all methods
return a new string

Try str methods in Python shell: 2/2

>>> "computer".capitalize()

>>> s=" I'm feeling spaced out. "
>>> s.rstrip()
>>> s.strip()

>>> robot = 'R2D2'
>>> robot.isupper()
>>> robot.isalpha()
>>> robot.isdigit()
>>> robot.isalnum()

List methods

>>> dir(list)

[…,'append', 'clear', 'copy', 'count', 'extend',
'index', 'insert', 'pop', 'remove', 'reverse',
'sort']

Methods that modify the list

Method Description Example

list.append(obj) Append object to the end of list.
>>> colors = ['yellow',
'blue']
>>> colors.append('red')

list.extend(list1)
Append the items in the list1
parameter to the list.

>>> colors.extend(['pink',
'green'])

list.pop([index])
Remove the item at the end of the
list; optional index to remove from
anywhere.

>>> colours.pop()
>>> colours.pop(2) 'red'

list.remove(obj)
Remove the first occurrence of the
object; error if not there.

>>> colours.remove('green’)
Traceback (most recent call
last): … ValueError:
list.remove(x): x not in list
>>> colours.remove('pink')

list.reverse() Reverse the list.
>>> grades = [95, 65, 75, 85]
>>> grades.reverse()

list.sort() Sort the list from smallest to largest. >>> grades.sort()

list.insert(int, obj)
Insert object at the given index,
moving items to make room.

>>> grades.insert(2, 80)

Methods that obtain information
(read) form the list

Method Description Example

list.count(object)
Return the number of times
object occurs in list.

>>> letters = ['a',
'a', 'b', 'c’]
>>>
letters.count('a') 2

list.index(object)
Return the index of the first
occurrence of object; error
if not there.

>>>
letters.index('a’)
0
>>>
letters.index('d')
Traceback (most
recent call last): …
ValueError: 'd' is
not in list

List mutability

• We say that lists are mutable: they can be modified

• All the other types we have seen so far (range, str, int, float
and bool) are immutable: they cannot be modified

>>> classes = ['chem', 'bio', 'cs', 'eng']
>>> # Elements can be added:
>>> classes.append('math')
['chem', 'bio', 'cs', 'eng', 'math']
>>> # Elements can be replaced:
>>> classes[1] = 'soc'
['chem', 'soc', 'cs', 'eng', 'math']
>>> # Elements can be removed:
>>> classes.pop()
['chem', 'soc', 'cs', 'eng']

Aliasing mutable variables

lst1 = [0, 2, 4, 6]

lst1[2] = 5

lst2 = lst1

lst1[-1] = 17

print(lst1)

print(lst2)

• We modified lst2 through lst1, because they both point to the
same memory address

• lst2 is not a new list, but it is an alias of lst1

Immutable parameters cannot be
modified inside the function

def conform(fav):

""" sets any number to my favorite number 42 """

fav = 42

fav = 7

conform(fav)

print(fav)

• int is immutable – we cannot change value pointed to by fav –
we can just change it to point to a new int

• The original variable remains unchanged

Mutable parameters can be modified
inside the function

def double_first(t):

""" doubles element 0 of t

"""

t [0] = t [0] * 2

lst = [40, 30, 50]

print(lst)

double_first(lst)

print(lst)

Mutable and immutable parameters

• When mutable objects are passed to a function, a new alias
reference to this object is created – both refer to the same
original object

• Because both original and copy refer to the same place in
memory, and the content of mutable objects can be modified
- by changing content from a copy, we affect the original
object

Mutable:
list
dictionary
set
…

Immutable:
int
float
str
range

Safe programming with mutables

• Passing immutable objects is safe: they cannot be accidentally
modified inside the function

• Passing mutable objects is unsafe: they can be modified inside
the function

• It is safer to create a new mutable object inside the function
and return it instead

• Example:

t.sort() ← changes the content of list t

sorted_t = sorted(t) ← puts sorted t into a new
variable, t itself remains unchanged

Converting between lists and strings

• Each string s can be converted into a list using the string
method s.split(separator):

'one,two,three'.split(',')

• Each list t of strings can be converted into a single string using
the list method glue.join(t)

','.join(['one', 'two', 'three'])

The split() method cuts the string into
a sequence of variables

rock_band = "Al Carl Mike Brian”

(rhythm, lead, vocals, bass) = rock_band.split()

This sequential type is called a
tuple

range function also produces a
tuple

int_seq = range(5)

(0,1,2,3,4)

We have encountered tuples before. Where?

Tuples Are Like Lists

Tuples are another kind of iterable that works much like a

list - they have elements which are indexed starting at 0

>>> x = ('Glenn', 'Sally', 'Joseph')

>>> print(x[2])

Joseph

>>> y = (1, 9, 2)

>>> print(y)

(1, 9, 2)

>>> print(max(y))

9

>>> for iter in y:

... print(iter)

...

1

9

2

>>>

but... Tuples are “immutable”

Unlike a list, once you create a tuple, you cannot alter

its contents - similar to a string

>>> x = [9, 8, 7]

>>> x[2] = 6

>>> print(x)

>>>[9, 8, 6]

>>>

>>> y = 'ABC'

>>> y[2] = 'D'

Traceback:'str'

object does

not support item

Assignment

>>>

>>> z = (5, 4, 3)

>>> z[2] = 0

Traceback:'tuple'

object does

not support item

Assignment

>>>

Things not to do With Tuples

>>> x = (3, 2, 1)

>>> x.sort()

Traceback:

AttributeError: 'tuple' object has no attribute 'sort'

>>> x.append(5)

Traceback:

AttributeError: 'tuple' object has no attribute 'append'

>>> x.reverse()

Traceback:

AttributeError: 'tuple' object has no attribute 'reverse'

>>>

Tuple vs. lists

>>> lst = list()

>>> dir(lst)

['append', 'count', 'extend', 'index', 'insert',

'pop', 'remove', 'reverse', 'sort']

>>> t = tuple()

>>> dir(t)

['count', 'index']

Tuples are More Efficient

• Since Python does not have to build tuple structures

to be modifiable, they are simpler and more efficient

in terms of memory use and performance than lists

• So in our program when we are making “temporary

variables” we prefer tuples over lists

Tuples as variables

• We can also put a tuple on the left-hand side of an

assignment statement

>>> (x, y) = (4, 'fred')

>>> print(y)
fred

>>> (a, b) = (99, 98)

>>> print(a)
99

LIST COMPREHENSION

List comprehension is a transformation applied to each
element of the list (string, range)

The result of this operation is a new list with transformed
elements

Example: discount

• Problem: apply a 20% discount to the list of prices.

input: list of old prices

output: list of new prices

• Looping:

def apply_discount (t, discount):

r = []

for x in t:

r += [x*discount]

return r

print(apply_discount ([10,20,30,100], 0.8))

Discount with one line of code

• Problem: apply a 20% discount to the list of prices.

input: list of old prices

output: list of new prices

• With list comprehension:

print([x*0.8 for x in [10,20,30,100]])

[8.0, 16.0, 24.0, 80.0]

Entering list comprehensions

• List comprehension is a simultaneous transformation of all
elements of a sequence (list or string or tuple)

• We attach the same transformation to each element, and we
generate a new sequence where each element is a result of
this atomic transformation

• Why? The transformations run in parallel and the code is
faster

Applying same operation to each
element of the list

[1, 2, 3, 4, 5]

[2*x for x in t]

[2, 4, 6, 8, 10]

What is this code doing?

>>> [2*x for x in [0,1,2,3,4,5]]

[0, 2, 4, 6, 8, 10]

>>> [y**2 for y in range(6)]

[0, 1, 4, 9, 16, 25]

>>> [c == 'a' for c in 'go away!']

[False, False, False, True, False,

True, False, False]

Elements of syntax

>>> [2*x for x in [0,1,2,3,4,5]]

[0, 2, 4, 6, 8, 10]

>>> [y**2 for y in range(6)]

[0, 1, 4, 9, 16, 25]

>>> [c == 'a' for c in 'go away!']

Any operation you

want to apply to each

element of the list

variable that takes on the

value of each element

iterable (list, string, range)
any name is OK!

[False, False, False, True, False, True,

False, False]

[Expr for i in items]

List comprehension

Single
element of
new output
sequence

Input
sequence

Single
element of

input
sequence

[Expr for i in items if Filter]

List comprehension: with filter

Output
element of

new
sequence

Input
sequence

Filter
elements
of input

sequence

Single
element of

input
sequence

[Expr for i in items if Filter]

What is printed?

a_list = [1, 2,'abc, 2.15, 3, 4]

out_list = [i**2 for i in a_list if type(i)==int]

print (out_list)

[1, 4, 9, 16]

Loops vs. list comprehensions
count_vows(s)

return sum([1 for x in s if x in 'aeiou'])

def count_vows(s):

def count_vows(s):

count = 0

for c in s:

if c in 'aeiou':

count += 1

return count

of vowels

Filtering for even numbers

def only_evens(t):

return [x for x in t if x%2 == 0]

list comprehension with filter

>>>only_evens([13, 2, 5, 6, 9])

[2, 6]

def only_evens(t):

return [x for x in t if is_even(x)]

[Expr1 if Cond(i) else Expr2 for i in items]

List comprehension: conditionals
Output

element of new
sequence if

Cond
Input

sequence

Output
element of

new sequence
if NOT Cond

Single
element of

input
sequence

[Expr1 if Cond(i) else Expr2 for i in items]

Conditionals: example

>>> lst = [0,3,-1,-4,2]

>>> [2*x if x>0 else -2*x for x in lst]

[0, 6, 2, 8, 4]

Breaking list into pairs

t = [1,2,3,4,5,6]

pairs = [t[x:x+2] for x in range(0, len(t), 2)]

print (pairs)

Examples

Generate all powers of 2 from 0 to 10
lst = [2**i for i in range (10)]

[1 ,2 ,4 ,8 ,16 ,...2^9]

Given a list, get a list of square roots of its elements
from math import sqrt

lst = [sqrt (x) for x in otherlist]

produced a squared list

Generate a list of odd numbers from 0 to 10
list=[x for x in range(10) if x % 2 == 1]

[1, 3, 5, 7, 9]

• List Comprehensions are at least 35% faster than FOR loop

• They apply transformations to each element of the list in
parallel (say, using multiple cores)

• They are a syntax shortcut for more general concept of
mapping

• The type of computation when data is transformed into the
output without intermediate states is the basis of functional
programming

Why list comprehensions?

transformation

DATA NEW DATA

[butterfly(e) for e in caterpillar]

