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Lists (strings) are Python objects

They have attached functions that 
work on the object itself

These functions are called methods

s = 'abc’

s = s.upper()

n = s.count('a’)

t = [1, 2, 3, 2]

t.count(2)

i=t.count(3)



What methods are available?

s='abc'

dir(s)

dir(str)

[…'capitalize', 'count', 'encode', 'endswith', 
'find', 'format', 'index', 'isalnum', 
'isalpha', 'isdecimal', 'isdigit', 'islower', 
'isnumeric', 'isprintable', 'isspace', 
'isupper', 'join', 'lower’, …]



How to use a method?

• help(str.find)
Help on method_descriptor:
find(...)

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end].  Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.



Try str methods in Python shell: 1/2

>>> white_rabbit = "I'm late! I'm late! For a 
very important date!"

>>> white_rabbit.lower()

>>> white_rabbit.find('late')

>>> white_rabbit.count('ate')

>>> white_rabbit.find('late',7)

>>> white_rabbit.find('Late')

>>> white_rabbit.rfind('late')

>>> white_rabbit The original string remains 
unchanged, all methods 
return a new string



Try str methods in Python shell: 2/2

>>> "computer".capitalize()

>>> s="      I'm feeling spaced out.        "
>>> s.rstrip()
>>> s.strip()

>>> robot = 'R2D2'
>>> robot.isupper()
>>> robot.isalpha()
>>> robot.isdigit()
>>> robot.isalnum()



List methods

>>> dir(list)

[…,'append', 'clear', 'copy', 'count', 'extend', 
'index', 'insert', 'pop', 'remove', 'reverse', 
'sort']



Methods that modify the list

Method Description Example

list.append(obj) Append object to the end of list.
>>> colors = ['yellow', 
'blue'] 
>>> colors.append('red')

list.extend(list1)
Append the items in the list1 
parameter to the list.

>>> colors.extend(['pink', 
'green'])

list.pop([index])
Remove the item at the end of the 
list; optional index to remove from 
anywhere.

>>> colours.pop() 
>>> colours.pop(2) 'red'

list.remove(obj)
Remove the first occurrence of the 
object; error if not there.

>>> colours.remove('green’) 
Traceback (most recent call 
last): … ValueError: 
list.remove(x): x not in list 
>>> colours.remove('pink')

list.reverse() Reverse the list.
>>> grades = [95, 65, 75, 85] 
>>> grades.reverse()

list.sort() Sort the list from smallest to largest. >>> grades.sort()

list.insert(int, obj)
Insert object at the given index, 
moving items to make room.

>>> grades.insert(2, 80)



Methods that obtain information 
(read) form the list

Method Description Example

list.count(object)
Return the number of times 
object occurs in list.

>>> letters = ['a', 
'a', 'b', 'c’] 
>>> 
letters.count('a') 2 

list.index(object)
Return the index of the first 
occurrence of object; error 
if not there.

>>> 
letters.index('a’) 
0 
>>> 
letters.index('d') 
Traceback (most 
recent call last): … 
ValueError: 'd' is 
not in list 



List mutability

• We say that lists are mutable: they can be modified

• All the other types we have seen so far (range, str, int, float 
and bool) are immutable: they cannot be modified

>>> classes = ['chem', 'bio', 'cs', 'eng']
>>> # Elements can be added:
>>> classes.append('math')
['chem', 'bio', 'cs', 'eng', 'math']
>>> # Elements can be replaced:
>>> classes[1] = 'soc'
['chem', 'soc', 'cs', 'eng', 'math']
>>> # Elements can be removed:
>>> classes.pop()
['chem', 'soc', 'cs', 'eng']



Aliasing mutable variables

lst1 = [0, 2, 4, 6]

lst1[2] = 5

lst2 = lst1

lst1[-1] = 17

print(lst1)

print(lst2)

• We modified lst2 through lst1, because they both point to the 
same memory address

• lst2 is not a new list, but it is an alias of lst1



Immutable parameters cannot be 
modified inside the function

def conform(fav):   

""" sets any number to my favorite number 42 """    

fav = 42    

fav = 7

conform(fav)

print(fav)

• int is immutable – we cannot change value pointed to by fav –
we can just change it to point to a new int

• The original variable remains unchanged



Mutable parameters can be modified 
inside the function

def double_first(t):    

""" doubles element 0 of t     

"""    

t [0] = t [0] * 2

lst = [40, 30, 50]

print(lst)

double_first(lst)

print(lst)



Mutable and immutable parameters

• When mutable objects are passed to a function, a new alias
reference to this object is created – both refer to the same 
original object

• Because both original and copy refer to the same place in 
memory, and the content of mutable objects can be modified 
- by changing content from a copy, we affect the original 
object

Mutable:
list
dictionary
set
…

Immutable:
int
float
str
range



Safe programming with mutables

• Passing immutable objects is safe: they cannot be accidentally 
modified inside the function

• Passing mutable objects is unsafe: they can be modified inside 
the function

• It is safer to create a new mutable object inside the function 
and return it instead

• Example:

t.sort() ← changes the content of list t

sorted_t = sorted(t) ← puts sorted t into a new 
variable, t itself remains unchanged



Converting between lists and strings

• Each string s can be converted into a list using the string 
method s.split(separator):

'one,two,three'.split(',')

• Each list t of strings can be converted into a single string using 
the list method glue.join(t)

','.join(['one', 'two', 'three'])



The split() method cuts the string into 
a sequence of variables

rock_band = "Al Carl Mike Brian”

(rhythm, lead, vocals, bass) = rock_band.split()

This sequential type is called a 
tuple

range function also produces a 
tuple

int_seq = range(5)

(0,1,2,3,4)

We have encountered tuples before. Where?



Tuples Are Like Lists

Tuples are another kind of iterable that works much like a 

list - they have elements which are indexed starting at 0

>>> x = ('Glenn', 'Sally', 'Joseph')

>>> print(x[2])

Joseph

>>> y = ( 1, 9, 2 )

>>> print(y)

(1, 9, 2)

>>> print(max(y))

9

>>> for iter in y:

...     print(iter)

... 

1

9

2

>>> 



but... Tuples are “immutable”

Unlike a list, once you create a tuple, you cannot alter 

its contents - similar to a string

>>> x = [9, 8, 7]

>>> x[2] = 6

>>> print(x)

>>>[9, 8, 6]

>>> 

>>> y = 'ABC'

>>> y[2] = 'D'

Traceback:'str' 

object does 

not support item 

Assignment

>>> 

>>> z = (5, 4, 3)

>>> z[2] = 0

Traceback:'tuple' 

object does 

not support item 

Assignment

>>> 



Things not to do With Tuples

>>> x = (3, 2, 1)

>>> x.sort()

Traceback:

AttributeError: 'tuple' object has no attribute 'sort'

>>> x.append(5)

Traceback:

AttributeError: 'tuple' object has no attribute 'append'

>>> x.reverse()

Traceback:

AttributeError: 'tuple' object has no attribute 'reverse'

>>> 



Tuple vs. lists

>>> lst = list()

>>> dir(lst)

['append', 'count', 'extend', 'index', 'insert', 

'pop', 'remove', 'reverse', 'sort']

>>> t = tuple()

>>> dir(t)

['count', 'index']



Tuples are More Efficient

• Since Python does not have to build tuple structures 

to be modifiable, they are simpler and more efficient 

in terms of memory use and performance than lists

• So in our program when we are making “temporary 

variables” we prefer tuples over lists



Tuples as variables

• We can also put a tuple on the left-hand side of an 

assignment statement

>>> (x, y) = (4, 'fred')

>>> print(y)
fred

>>> (a, b) = (99, 98)

>>> print(a)
99



LIST COMPREHENSION

List comprehension is a transformation applied to each 
element of the list (string, range)

The result of this operation is a new list with transformed 
elements



Example: discount

• Problem: apply a 20% discount to the list of prices.

input: list of old prices

output: list of new prices

• Looping:

def apply_discount (t, discount):

r = []

for x in t:

r += [x*discount]

return r

print(apply_discount ([10,20,30,100], 0.8))



Discount with one line of code

• Problem: apply a 20% discount to the list of prices.

input: list of old prices

output: list of new prices

• With list comprehension:

print([x*0.8 for x in [10,20,30,100]])

[8.0, 16.0, 24.0, 80.0]



Entering list comprehensions

• List comprehension is a simultaneous transformation of all 
elements of a sequence (list or string or tuple)

• We attach the same transformation to each element, and we 
generate a new sequence where each element is a result of 
this atomic transformation

• Why? The transformations run in parallel and the code is 
faster



Applying same operation to each 
element of the list

[1, 2, 3, 4, 5]

[2*x for x in t]

[2, 4, 6, 8, 10]



What is this code doing?

>>> [ 2*x for x in [0,1,2,3,4,5] ]

[0, 2, 4, 6, 8, 10]

>>> [ y**2 for y in range(6) ]

[0, 1, 4, 9, 16, 25]

>>> [ c == 'a' for c in 'go away!' ]

[False, False, False, True, False, 

True, False, False]



Elements of syntax

>>> [ 2*x for x in [0,1,2,3,4,5] ]

[0, 2, 4, 6, 8, 10]

>>> [ y**2 for y in range(6) ]

[0, 1, 4, 9, 16, 25]

>>> [ c == 'a' for c in 'go away!' ]

Any operation you 

want to apply to each 

element of the list

variable that takes on the 

value of each element

iterable (list, string, range)
any name is OK!

[False, False, False, True, False, True, 

False, False]



[ Expr for i in items]

List comprehension

Single 
element of 
new output 
sequence

Input 
sequence

Single 
element of 

input 
sequence



[ Expr for i in items if Filter]

List comprehension: with filter

Output 
element of 

new 
sequence

Input 
sequence

Filter 
elements 
of input 

sequence

Single 
element of 

input 
sequence



[ Expr for i in items if Filter]

What is printed?

a_list = [1, 2,'abc, 2.15, 3, 4]

out_list = [i**2 for i in a_list if type(i)==int]

print (out_list)

[1, 4, 9, 16]



Loops vs. list comprehensions
count_vows(s)

return sum([1 for x in s if x in 'aeiou'])

def count_vows(s):

def count_vows(s):

count = 0

for c in s:

if c in 'aeiou':

count += 1

return count

# of vowels



Filtering for even numbers

def only_evens(t):

return [x for x in t if x%2 == 0]

list comprehension with filter

>>>only_evens([13, 2, 5, 6, 9])

[2, 6]

def only_evens(t):

return [x for x in t if is_even(x)]



[ Expr1 if Cond(i) else Expr2 for i in items]

List comprehension: conditionals
Output 

element of new 
sequence if 

Cond
Input 

sequence

Output 
element of 

new sequence 
if NOT Cond

Single 
element of 

input 
sequence



[ Expr1 if Cond(i) else Expr2 for i in items]

Conditionals: example

>>> lst = [0,3,-1,-4,2]

>>> [2*x if x>0 else -2*x for x in lst]

[0, 6, 2, 8, 4]



Breaking list into pairs

t = [1,2,3,4,5,6]

pairs = [t[x:x+2] for x in range(0, len(t), 2)]

print (pairs)



Examples

Generate all powers of 2 from  0 to 10
lst = [2**i for i in range (10)] 

# [1 ,2 ,4 ,8 ,16 ,...2^9]

Given a list, get a list of square roots of its elements
from math import sqrt

lst = [sqrt (x) for x in otherlist ] 

# produced a squared list

Generate a list of odd numbers from 0 to 10
list=[x for x in range(10) if x % 2 == 1] 

# [1, 3, 5, 7, 9]



• List Comprehensions are at least 35% faster than FOR loop

• They apply transformations to each element of the list in 
parallel (say, using multiple cores)

• They are a syntax shortcut for more general concept of 
mapping

• The type of computation when data is transformed into the 
output without intermediate states is the basis of functional 
programming

Why list comprehensions?

transformation

DATA NEW DATA



[butterfly(e) for e in caterpillar]


