
Custom objects
Emulating numeric types

Lecture 07.02

By Marina Barsky

Special type: Time
Starter code

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/code/time.py

Class Time

• Attributes:
• hours and minutes

• Methods:
• Add time
• Subtract time
• Compare time (for sorting)

time_solution.py

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/code/time_solution.py

Modeling Cash Registers

cash_register.py
cash_register_special.py

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/code/cash_register.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/code/cash_register_special.py

Cash register class – blueprint for
creating new cash registers
if __name__ == '__main__’:

A cash register with 5 ones, 5 twos,

5 fives, 5 tens, and 5 twenties,

for a total of $190.

register = CashRegister(5, 5, 5, 5, 5)

print(register.get_total())

register.add(3, 'twos')

register.remove(2, 'twenties')

print(register.get_total())

Defining Class CashRegister

• The first line of the class definition is:

class CashRegister:

Constructor

class CashRegister:

def __init__(self, ones, twos, fives, tens, twenties):

self.ones = ones

self.twos = twos

self.fives = fives

self.tens = tens

self.twenties = twenties

creates an instance variable ones that
belongs to the CashRegister object

Constructor, called to initialize an object. By
convention, the first parameter is self. It refers to the
CashRegister object that is being initialized

Variables belonging to an
object are often called its
fields or attributes

We can already use our new type to
create cash registers

if __name__ == '__main__’:

register1 = CashRegister(5, 5, 5, 5, 5)

print (register1.tens)

register1.twenties = 6

register2 = CashRegister(5, 5, 5, 5, 6)

print (register1 is register2)

print (register1 == register2)

Two different objects
of the same class

False
False

Adding capabilities: method add()
def add(self, count, denomination):

""" (CashRegister, int, str) -> NoneType

Add count items of denomination to the register.

denomination is one of 'ones', 'twos',

'fives', 'tens', and 'twenties’.

"""

if denomination == 'ones':

self.ones += count

elif denomination == 'twos':

self.twos += count

elif denomination == 'fives':

self.fives += count

elif denomination == 'tens':

self.tens += count

elif denomination == 'twenties':

self.twenties += count

Adding capabilities: method get_total

def get_total(self):

""" (CashRegister) -> int

Return the total amount of cash in the register.

>>> register = CashRegister(5, 5, 5, 5, 5)

>>> register.get_total()

190

"""

return self.ones + self.twos * 2 + self.fives * 5 + \
self.tens * 10 + self.twenties * 20

self refers to a particular
register whose total is
being asked for

Exercise

• Based on a code provided in file cash_register.py,
implement method remove according to its docstring.

• Start from copying an existing method add, and make a
couple of changes

• Run the program and see if your remove method works as
expected

• To think about:

How would you modify internal representation of cash
denominations in order to make your code more expressive
and concise?

Making our own classes
‘members of the Pythonic society’
• When we add a new data type defined in our own class, we

want it to behave in the same way as other Python types:

• Print CashRegister object

• Add 2 cash registers using +

• Compare 2 cash registers for equality using ==

• …

Everything is an object

• All different types of objects inherit methods from a very
basic root class object

• These basic methods are implemented in the object class

object

str CashRegisterlist

dir(object)
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__',
'__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__le__',
'__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__']

is a

‘Useless’ printing

cr1 = CashRegister(2, 0, 0, 0, 0)

cr2 = CashRegister(0, 1, 0, 0, 0)

cr3 = CashRegister(1, 1, 0, 0, 0)

print(cr1)

print(cr3)

<__main__.CashRegister object at 0x000001D09FF36390>
<__main__.CashRegister object at 0x000001D09FF36400>

• Special method __str__ is called to get a string
representation of an object (str() or print())

• But our CashRegister does not have code for __str__ -
so the __str__ method of an object class is used instead

We need our own __str__

def __str__(self):

""" (CashRegister) -> str

Return a string representation of this CashRegister.

>>> reg1 = CashRegister(1, 2, 3, 4, 5)

>>> reg1.__str__()

CashRegister: $160 ($1x1, $2x2, $5x3, $10x4, $20x5)

"""
We want to see that
when the __str__
method is called

Implementing our own __str__ (1/3)

def __str__(self):

""" (CashRegister) -> str

Return a string representation of this CashRegister.

>>> reg1 = CashRegister(1, 2, 3, 4, 5)

>>> reg1.__str__()

CashRegister: $160 ($1x1, $2x2, $5x3, $10x4, $20x5)

"""

return 'CashRegister: $’ + \

self.get_total() + ' ($1x' + self.ones + \

', $2x' + self.twos + ', $5x' + self.fives + \

', $10x' + self.tens + ', $20x’ + \

self.twenties + ')'

Will this work?

Implementing our own __str__ (2/3)

def __str__(self):

""" (CashRegister) -> str

Return a string representation of this CashRegister.

>>> reg1 = CashRegister(1, 2, 3, 4, 5)

>>> reg1.__str__()

CashRegister: $160 ($1x1, $2x2, $5x3, $10x4, $20x5)

"""

return 'CashRegister: $’ + \

str(self.get_total()) + ' ($1x’ + str(self.ones) + \

', $2x’ + str(self.twos) + ', $5x' + str(self.fives)+\

', $10x' + str(self.tens) + ', $20x’ + \

str(self.twenties) + ')'

This code is extremely ugly and
error-prone! What to do?

Implementing our own __str__ (3/3)
– using format

def __str__(self):

""" (CashRegister) -> str

Return a string representation of this CashRegister.

>>> reg1 = CashRegister(1, 2, 3, 4, 5)

>>> reg1.__str__()

CashRegister: $160 ($1x1, $2x2, $5x3, $10x4, $20x5)

"""

return 'CashRegister: ' + \

'${0} ($1x{1}, $2x{2}, $5x{3}, $10x{4}, $20x{5})'.format(

self.get_total(), self.ones, self.twos,

self.fives, self.tens, self.twenties)

Placeholders for actual values

Actual values
to substitute

Now we can print cash registers

cr1 = CashRegister(2, 0, 0, 0, 0)

cr2 = CashRegister(0, 1, 0, 0, 0)

cr3 = CashRegister(1, 1, 0, 0, 0)

print(cr1)

print(cr3)
CashRegister: $2 ($1x2, $2x0, $5x0, $10x0, $20x0)
CashRegister: $3 ($1x1, $2x1, $5x0, $10x0, $20x0)

Optional method: __repr__

__str__ ("dunder* - string") and __repr__ ("dunder-
repper") are both special methods that return strings
representing the state of the object

__repr__ provides backup behavior if __str__ is
missing (that is - it is enough to implement __repr__)

__repr__ is a printable representation of an object for
programming and debugging

__str__ is a nicely printable representation of an object
for the user of your program

*double-underscore

cr1 = CashRegister(2, 0, 0, 0, 0)

cr2 = CashRegister(0, 1, 0, 0, 0)

cr3 = CashRegister(1, 1, 0, 0, 0)

crs = []

crs.append(cr1)

crs.append(cr2)

crs.append(cr3)

print(crs)

Implementing __repr__ is
important to print list of objects

Without __repr__:
[<__main__.CashRegister object at 0x000001E8A63966A0>,
<__main__.CashRegister object at 0x000001E8A63964A8>,
<__main__.CashRegister object at 0x000001E8A63964E0>]

With __repr__ implemented

Without __repr__:

[CashRegister: $2 ($1x2, $2x0, $5x0, $10x0, $20x0),
CashRegister: $2 ($1x0, $2x1, $5x0, $10x0, $20x0),
CashRegister: $3 ($1x1, $2x1, $5x0, $10x0, $20x0)]

cr1 = CashRegister(2, 0, 0, 0, 0)

cr2 = CashRegister(0, 1, 0, 0, 0)

cr3 = CashRegister(1, 1, 0, 0, 0)

crs = []

crs.append(cr1)

crs.append(cr2)

crs.append(cr3)

print(crs)

def __repr__(self):

""" (CashRegister) -> str

Return an unambiguous

representation of an object

for debugging

"""

return self.__str__()

Comparing two cash registers using
==

help (object.__eq__)

Help on wrapper_descriptor:

__eq__(self, value, /)

Return self==value.

• We implement the __eq__ method to our CashRegister
class so that we can compare two cash register objects using
==

• Our decision: We will consider two cash registers to be
equal if they contain the same total amount of cash

Implementing __eq__

def __eq__(self, other):

""" (CashRegister, CashRegister) -> bool

Return True iff this CashRegister

has the same amount of money as other.

>>> reg1 = CashRegister(2, 0, 0, 0, 0)

>>> reg2 = CashRegister(0, 1, 0, 0, 0)

>>> reg1 == reg2

True

"""

return self.get_total() == other.get_total()

Now we can compare

print(cr1 == cr2)

print(cr3 == cr2)

def __eq__(self, other):

return self.get_total() == other.get_total()

cr1 = CashRegister(2, 0, 0, 0, 0)

cr2 = CashRegister(0, 1, 0, 0, 0)

cr3 = CashRegister(1, 1, 0, 0, 0)

In class CashRegister:

True
False

self becomes left operand (cr1),
other becomes right operand (cr2)

Adding two CashRegisters

• Implement __add__ method for class CashRegister, so we
can add 2 registers using operator +.

• According to docstring in file cash_register_special.py, we
are adding two cash registers by summing up cash amount
in all their respective denominations

• Note that when we use a + b, the result is a new object of
the same type

How to see the results of our hard
work with dir()

• dir(): provides a listing of all the attributes and methods
of a new object, including the ones inherited from the class
object

cr1 = CashRegister(2, 0, 0, 0, 0)

print (dir(cr1))

['__add__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__',
'__init__', '__le__', '__lt__', '__module__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '__weakref__', 'add', 'fives', 'get_total', 'ones',
'remove', 'tens', 'twenties', 'twos']

Summary

• Object - a collection of attributes (data) and methods
(functions)

• A class statement provides a blueprint for creating objects.

• In Python all data are objects. An object’s type corresponds
to its class

• Operators (+, ==, >, <) can be overloaded so that the
operation performed depends on the class of the operands

What to overload to make your
new type behave properly

Which method to
overload

Goal Operator Returns

__lt__(self, other)
__le__ (self, other)
__gt__ (self, other)
__ge__ (self, other)
__eq__ (self, other)
__ne__ (self, other)

Comparison,
sorting

self < other
self <= other
self > other
self >= other
self == other
self != other

Boolean

__add__ (self, other)
__sub__ (self, other)
__mul__ (self, other)
__div__ (self, other)

Numerical
operations

self + other
self - other
self * other
self / other

Returns new
object

__iadd__ (self, other)
__isub__ (self, other)

In-place
modifiers

self += other
self -= other

Replaces current
object with a new
one

